(1)請(qǐng)?jiān)趫D中作出, 查看更多

 

題目列表(包括答案和解析)

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱(chēng))變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程  ▲ 

(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.

操作示例

當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.

思考發(fā)現(xiàn)

小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.

實(shí)踐探究

1.正方形FGCH的面積是         ;(用含a, b的式子表示)

2.類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

 

3.聯(lián)想拓展小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫(huà)出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

 

查看答案和解析>>

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱(chēng))變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

查看答案和解析>>

在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
【小題1】正方形FGCH的面積是         ;(用含a, b的式子表示)
【小題2】類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

【小題3】聯(lián)想拓展小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫(huà)出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
【小題1】正方形FGCH的面積是         ;(用含a, b的式子表示)
【小題2】類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

【小題3】聯(lián)想拓展小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫(huà)出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案