① ② ③ ④ 觀察左邊這張圖.回答下列問(wèn)題: 查看更多

 

題目列表(包括答案和解析)

如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.請(qǐng)你認(rèn)真觀察思考后回答下列問(wèn)題:

(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?/P>

(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2

①當(dāng)n=2時(shí),求S1∶S2的值;

②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12個(gè)小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相同地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.

請(qǐng)你認(rèn)真觀察思考后回答下列問(wèn)題:

(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?/P>

(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2

①當(dāng)n=2時(shí),求S1∶S2的;

②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

29、如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12個(gè)小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問(wèn)題:
(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?table class="edittable"> 紙片的邊長(zhǎng)n 2 3 4 5 6 使用的紙片張數(shù) (2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2
①當(dāng)n=2時(shí),求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12個(gè)小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問(wèn)題:
(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?table class="edittable">紙片的邊長(zhǎng)n23456使用的紙片張數(shù)(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2
①當(dāng)n=2時(shí),求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12個(gè)小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問(wèn)題:
(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?table class="edittable">紙片的邊長(zhǎng)n23456使用的紙片張數(shù)(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2
①當(dāng)n=2時(shí),求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案