(1)求直線與拋物線的解析式, 查看更多

 

題目列表(包括答案和解析)

已知拋物線的解析式為

(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;

(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標(biāo);

(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結(jié)論,不要求寫出計算、證明過程).

 

查看答案和解析>>

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標(biāo);
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結(jié)論,不要求寫出計算、證明過程).

查看答案和解析>>

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標(biāo);
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結(jié)論,不要求寫出計算、證明過程).

查看答案和解析>>

已知:拋物線的解析式為y=x2-(2m-1)x+m2-m,
(1)求證:此拋物線與x軸必有兩個不同的交點;
(2)若此拋物線與直線y=x-3m+4的一個交點在y軸上,求m的值.

查看答案和解析>>

 拋物線的部分圖像如圖所示,

1.(1)求出二次函數(shù)的解析式;

2.(2)若,寫出的取值范圍;

3.(3)將二次函數(shù)的圖象在軸上方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結(jié)合這個新的圖象回答:當(dāng)直線與此圖象有兩個公共點時,求的取值范圍.

 

 

查看答案和解析>>


同步練習(xí)冊答案