(2)若過D.E的拋物線與軸相交于.求拋物線的解析式和對稱軸方程. 查看更多

 

題目列表(包括答案和解析)

23、拋物線y=ax2+2x+3(a<0)交x軸于A,B兩點,交y軸于點C,頂點為D,而且經(jīng)過點(2,3).
(1)寫出拋物線的解析式及C、D兩點的坐標(biāo);
(2)連接BC,以BC為邊向右作正方形BCEF,求E、F兩點的坐標(biāo);若將此拋物線沿其對稱軸向上平移,試判斷平移后的拋物線是否會同時經(jīng)過正方形BCEF的兩個頂點E、F;若能,寫出平移后的拋物線解析式,若不能,請說明理由;
(3)若P是拋物線y=ax2+2x+3上任意一點,過點P作直線垂直于拋物線y=ax2+2x+3的對稱軸,垂足為Q,那么是否存在著這樣的點P,使以P、Q、D為頂點的三角形與△BOC相似?若存在,請求出P點的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

拋物線y=ax2+2x+3(a<0)交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)寫出拋物線的對稱軸及C、D兩點的坐標(biāo)(用含a的代數(shù)式表示);
(2)連接BD并以BD為直徑作⊙M,當(dāng)a=-1時,請判斷⊙M是否經(jīng)過點C,并說明理由;
(3)在(2)題的條件下,點P是拋物線上任意一點,過P作直線垂直于對稱軸,垂足為Q.那么是否存在這樣的點P,使△PQD與以B、C、D為頂點的三角形相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

拋物線y=ax2+2x+3(a<0)交x軸于A,B兩點,交y軸于點C,頂點為D,而且經(jīng)過點(2,3).
(1)寫出拋物線的解析式及C、D兩點的坐標(biāo);
(2)連接BC,以BC為邊向右作正方形BCEF,求E、F兩點的坐標(biāo);若將此拋物線沿其對稱軸向上平移,試判斷平移后的拋物線是否會同時經(jīng)過正方形BCEF的兩個頂點E、F?若能,寫出平移后的拋物線解析式;若不能,請說明理由;
(3)若P是拋物線y=ax2+2x+3上任意一點,過點P作直線垂直于拋物線y=ax2+2x+3的對稱軸,垂足為Q,那么是否存在著這樣的點P,使以P、Q、D為頂點的三角形與△BOC相似?若存在,請求出P點的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標(biāo)是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQOC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍.
(3)對于二次三項式x2-10x+36,小明同學(xué)作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于11.你是否同意他的說法?說明你的理由.

查看答案和解析>>

拋物線軸于、兩點,交軸于點,頂點為.

1.寫出拋物線的對稱軸及、兩點的坐標(biāo)(用含的代數(shù)式表示)

2.連接并以為直徑作⊙,當(dāng)時,請判斷⊙是否經(jīng)過點,并說明理由;

3.在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、為頂點的三角形相似?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案