12.下圖是由一些完全相同的小正方體塊搭成的物體的三種視圖.那么搭成這個物體所用的小正方體塊的個數(shù)是 A.6個 B.7個 C.8個 D.9個第Ⅱ卷 (非選擇題 共72分) 查看更多

 

題目列表(包括答案和解析)

下圖是由一些完全相同的小正方體搭成的幾何體的三種視圖,那么搭成這個幾何體所用的小正方體的個數(shù)為(  )

A、5個       B、6個       C、7個      D、8個

(主視圖)  (左視圖)  (俯視圖)

查看答案和解析>>

下圖是由一些完全相同的小正方體塊搭成的物體從不同的方向看得到的平面圖,那么搭成這個物體所用的小正方體塊的個數(shù)是

[  ]
A.

6

B.

7

C.

8

D.

9

查看答案和解析>>

下圖是由一些完全相同的小正方體搭成的幾何體的三種視圖,那么搭成這個幾何體所用的小正方體的個數(shù)為( )

A、5個   B、6個   C、7個   D、8個

查看答案和解析>>

在前面的學習中,我們通過對同一面積的不同表達和比較,根據圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式

這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:

兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

【研究不等關系】

提出問題:怎么運用矩形面積表示的大小關系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,

畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:

,時,表示的大小關系

根據題意,設,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

 

查看答案和解析>>

在前面的學習中,我們通過對同一面積的不同表達和比較,根據圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式
這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)       .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積
即:





歸納提煉:求關于的一元二次方程的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)
【研究不等關系】
提出問題:怎么運用矩形面積表示的大小關系(其中)?
幾何建模:
(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,
畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:
,時,表示的大小關系
根據題意,設,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

查看答案和解析>>


同步練習冊答案