⑴在運動開始后的每一時刻一定存在以點..為頂點的三角形和以點..為頂點的三角形嗎?如果存在.那么以點..為頂點的三角形和以點..為頂點的三角形相似嗎?以點..為頂點的三角形和以點..為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中(單位長度:1 cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2 cm/s的速度沿折線AOy運動,同時點Q從點B開始以1 cm/s的速度沿折線BOy運動.

⑴在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.

⑵試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.

⑶請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷t=(2+4
2
)s
時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷數(shù)學公式時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

(2003•濱州)在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>


同步練習冊答案