26.已知內接于以為直徑的.過點作的切線交的延長線于點.且. 查看更多

 

題目列表(包括答案和解析)

已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)當PA的長度為
2
2
時,∠PAB=60°;
(2)當PA的長度為
2
2
8
5
5
2
2
8
5
5
時,△PAD是等腰三角形;
(3)過點P作PE⊥PC交射線AB于E,延長BP交射線AD于F,試證明:AE=AF.

查看答案和解析>>

類比學習:
我們已經(jīng)知道,頂點在圓上,且角的兩邊都和圓相交的角叫做圓周角,如圖1,∠APB就是圓周角,弧AB是∠APB所夾的。
類似的,我們可以把頂點在圓外,且角的兩邊都和圓相交的角叫做圓外角,如圖2,∠APB就是圓外角,弧AB和弧CD是∠APB所夾的弧,
新知探索:
圖(2)中,弧AB和弧CD度數(shù)分別為80°和30°,∠APB=
25
25
°,
歸納總結:
(1)圓周角的度數(shù)等于它所夾的弧的度數(shù)的一半;
(2)圓外角的度數(shù)等于
所夾兩弧的度數(shù)差的一半
所夾兩弧的度數(shù)差的一半

新知應用:
直線y=-x+m與直線y=-
3
3
x+2相交于y軸上的點C,與x軸分別交于點A、B.經(jīng)過A、B、C三點作⊙E,點P是第一象限內⊙E外的一動點,且點P與圓心E在直線AC的同一側,直線PA、PC分別交⊙E于點M、N,
設∠APC=θ.
①求A點坐標;         ②求⊙E的直徑;
③連接MN,求線段MN的長度(可用含θ的三角函數(shù)式表示).

查看答案和解析>>

閱讀下列材料后回答問題:

在平面直角坐標系中,已知x軸上的兩點A(X1,0),B(X2,0)的距離記作,如果是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離。

如圖,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作、,,直線AN1與BM2交于Q點。

在Rt△ABQ中,,∵,

由此得任意兩點之間的距離公式:

如果某圓的圓心為(0,0),半徑為r。設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到,即:,    整理得:。我們稱此式為圓心在原點,半徑為r的圓的方程。

(1)直接應用平面內兩點間距離公式,求點 之間的距離;

(2)如果圓心在點P(2,3),半徑為3,求此圓的方程。

(3)方程是否是圓的方程?如果是,求出圓心坐標與半徑。

查看答案和解析>>

已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA:AB=1:2.
精英家教網(wǎng)(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明;
(3)利用圖中已標明的字母,連接線段,找出至少5對相似三角形(不包含全等,不需要證明).(多寫者給附加分,附加分不超過3分,計入總分,但總分不超過120分.)

查看答案和解析>>

已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA:AB=1:2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明;
(3)利用圖中已標明的字母,連接線段,找出至少5對相似三角形(不包含全等,不需要證明).

查看答案和解析>>


同步練習冊答案