題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題(每小題5分,共60分)
BDACC ACDDB AA
二、填空題(每小題4分,共16分)
13.; 14. 15.―192 16.
三、解答題(共74分)
17.解:(I)由正弦定理,有
代入得
即
(Ⅱ)
由得
所以,當(dāng)時,取得最小值為0
18.解:(I)由已知得
故
即
故數(shù)列為等比數(shù)列,且
由當(dāng)時,
所以
(Ⅱ)
所以
19.解:(I)從50名教師隨機選出2名的方法為=1225,選出2人使用教材版本相同的方法數(shù)
故2人使用版本相同的概率為。
(Ⅱ)
的分布為
0
1
2
20.解(I)由該四棱錐的三視圖可知,該四棱錐的底面是邊長為1的正方形,
側(cè)棱底面,且,
(Ⅱ)不論點E在何位置,都有
證明:連結(jié)是正方形,
底面,且平面,
又平面
不論點在何位置,都有平面
不論點E在何位置,都有。
(Ⅲ)以為坐標原點,所在的直線為軸建立空間直角坐標系如圖:
則從而
設(shè)平面和平面的法向量分別為
,
由法向量的性質(zhì)可得:
令則
設(shè)二面角的平面角為,則
二面角的大小為。
21.解:(1)由題意可知直線的方程為,
因為直線與圓相切,所以,即
從而
(2)設(shè),則,
又
(
①當(dāng)時,,解得,
此時橢圓方程為
②當(dāng)時,,解得,
當(dāng),故舍去
綜上所述,橢圓的方程為
22.解:(I)依題意,知的定義域為(0,+)
當(dāng)時,
令,解得。
當(dāng)時,;當(dāng)時,
又所以的極小值為2-2,無極大值。
(Ⅱ);
令,解得。
(1)若令,得令,得
(2)若,
①當(dāng)時,,
令,得或;
令,得
②當(dāng)時,
③當(dāng)時,得,
令,得或
令,得
綜上所述,當(dāng)時,的遞減區(qū)間為,遞增區(qū)間為
當(dāng)時,的遞減區(qū)間為;遞增區(qū)間為
當(dāng)時,遞減區(qū)間為
當(dāng)時,的遞減區(qū)間為,遞增區(qū)間為
(Ⅲ)當(dāng)時, ,
由,知時,
依題意得:對一切正整數(shù)成立
令,則(當(dāng)且僅當(dāng)時取等號)
又在區(qū)間單調(diào)遞增,得,
故又為正整數(shù),得
當(dāng)時,存在,對所有滿足條件。
所以,正整數(shù)的最大值為32。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com