(1)若的焦點(diǎn)恰好是的上焦點(diǎn).且,過(guò)點(diǎn) 查看更多

 

題目列表(包括答案和解析)

從橢圓數(shù)學(xué)公式上一點(diǎn)P向x軸作垂線,垂足恰好為橢圓的左焦點(diǎn)F1,M是橢圓的右頂點(diǎn),N是橢圓的上頂點(diǎn),且數(shù)學(xué)公式
(1)求該橢圓的離心率;
(2)若過(guò)右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為A1,直線A1B與x軸交于點(diǎn)R(4,0),求橢圓C的方程.

查看答案和解析>>

從橢圓上一點(diǎn)P向x軸作垂線,垂足恰好為橢圓的左焦點(diǎn)F1,M是橢圓的右頂點(diǎn),N是橢圓的上頂點(diǎn),且
(1)求該橢圓的離心率;
(2)若過(guò)右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為A1,直線A1B與x軸交于點(diǎn)R(4,0),求橢圓C的方程.

查看答案和解析>>

已知直線所經(jīng)過(guò)的定點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的最大距離為3.

(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

     (Ⅱ) 設(shè)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),若,求直線的斜率的取值范圍.

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

(Ⅰ)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

(Ⅱ)在(Ⅰ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

 

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

(Ⅰ)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

 (Ⅱ)在(Ⅰ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分

(2)∵成等比數(shù)列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則

        ………………………………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分

(2)過(guò),連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說(shuō)明:若用空間向量解,請(qǐng)參照給分)

21.解:(1) ……2分

①當(dāng)時(shí),內(nèi)是增函數(shù),故無(wú)最小值………………………3分

②當(dāng)時(shí),

 

 

 

 

處取得極小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在區(qū)間上均為增函數(shù)

,故要在內(nèi)為增函數(shù)

                  

必須:                或                    ………………………………………10分

                 

  ∴實(shí)數(shù)的取值范圍是:…………………12分

22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)

…3分

  ∴ ………4分

的離心率為

 …………………………………………………………6分

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

點(diǎn)處拋物線的切線斜率 ……………………………………………………8分

則切線方程為:……………………………………………………9分

又∵過(guò)點(diǎn)  ∴  ∴  ∴

代入橢圓方程得:    ……………………………………………………11分

  ………………13分

                  

當(dāng)且僅當(dāng)                 即           上式取等號(hào)

                    

∴此時(shí)橢圓的方程為:       ………………………………………………14分

 

 

 

 


同步練習(xí)冊(cè)答案