題目列表(包括答案和解析)
如圖,在棱長(zhǎng)為的正方體中,、分別是棱、上的動(dòng)點(diǎn),且。
(Ⅰ)求證:
(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角的正切值
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線(xiàn)段PD上存在點(diǎn)E使得BE⊥CE,求線(xiàn)段AD的取值范圍,并求當(dāng)線(xiàn)段PD上有且只
有一個(gè)點(diǎn)E使得BE⊥CE時(shí),二面角E—BC—A正切值的大小。
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線(xiàn)段PD上存在點(diǎn)E使得BE⊥CE,求線(xiàn)段AD的取值范圍,并求當(dāng)線(xiàn)段PD上有且只
有一個(gè)點(diǎn)E使得BE⊥CE時(shí),二面角E—BC—A正切值的大小。
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.80 14.32 15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴的最小正周期為 …………………6分
(2)∵成等比數(shù)列 ∴ 又
∴ ……………………………………4分
又∵ ∴ ……………………………………………………10分
……………………………………12分
18.解:(1)設(shè)公差由成等比數(shù)列得 …………………1分
∴即 ∴舍去或 …………………………3分
∴ ………………………………………………4分
∴ ………………………………………………6分
(2) ∵ ………………………………………………7分
∴…① …………8分
…………② …………9分
①-②得:
∴ ………………………………………………12分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則
………………………………………………12分
20.解:(1)連結(jié) 為正△ …1分
面3分
面面
即點(diǎn)的位置在線(xiàn)段的四等分點(diǎn)且靠近處 ………………………………………6分
(2)過(guò)作于,連
由(1)知面(三垂線(xiàn)定理)
∴為二面角的平面角……9分
在中,
在中,
∴二面角的大小為 ………………………………………12分
(說(shuō)明:若用空間向量解,請(qǐng)參照給分)
21.解:(1) 由得 ……2分
①當(dāng)時(shí),在內(nèi)是增函數(shù),故無(wú)最小值………………………3分
②當(dāng)時(shí),
在處取得極小值 ………………………5分
由 解得:≤ ∴≤ …………6分
≥
(2)由(1)知在區(qū)間上均為增函數(shù)
又,故要在內(nèi)為增函數(shù)
≤ ≥
必須: 或 ………………………………………10分
≤ ≤
∴≤或≥ ∴實(shí)數(shù)的取值范圍是:…………………12分
22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)
∴ ∵∴…3分
∵ ∴ ………4分
∴的離心率為
…………………………………………………………6分
(2)∵,∴拋物線(xiàn)方程為:設(shè)點(diǎn)則 ∵
∴點(diǎn)處拋物線(xiàn)的切線(xiàn)斜率 ……………………………………………………8分
則切線(xiàn)方程為:……………………………………………………9分
又∵過(guò)點(diǎn) ∴ ∴ ∴
代入橢圓方程得: ……………………………………………………11分
∴≥ ………………13分
當(dāng)且僅當(dāng) 即 上式取等號(hào)
∴此時(shí)橢圓的方程為: ………………………………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com