3.設(shè)是等比數(shù)列.若.則等于 A.6 B.8 C.9 D.16 查看更多

 

題目列表(包括答案和解析)

設(shè)等差數(shù)列{an}的公差d大于0,a1=9d,若ak是a1與a2k的等比中項(xiàng),則k=
[     ]
A.2
B.4
C.6
D.8

查看答案和解析>>

(2007天津,8)設(shè)等差數(shù)列的公差d不為0,.若的等比中項(xiàng),則k等于

[  ]

A2

B4

C6

D8

查看答案和解析>>

若橢圓E1
x2
a
2
1
+
y2
b
2
1
=1
和橢圓E2
x2
a
2
2
+
y2
b
2
2
=1
滿足
a2
a1
=
b2
b1
=m(m>0)
,則稱這兩個(gè)橢圓相似,m是相似比.
(Ⅰ)求過(2,
6
)
且與橢圓
x2
4
+
y2
2
=1
相似的橢圓的方程;
(Ⅱ)設(shè)過原點(diǎn)的一條射線l分別與(Ⅰ)中的兩橢圓交于A、B兩點(diǎn)(點(diǎn)A在線段OB上).
①若P是線段AB上的一點(diǎn),若|OA|,|OP|,|OB|成等比數(shù)列,求P點(diǎn)的軌跡方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

若橢圓E1
x2
a21
+
y2
b21
=1
和橢圓E2
x2
a22
+
y2
b22
=1
滿足
a2
a1
=
b2
b1
=m(m>0)
,則稱這兩個(gè)橢圓相似,m是相似比.
(Ⅰ)求過(2,
6
)
且與橢圓
x2
4
+
y2
2
=1
相似的橢圓的方程;
(Ⅱ)設(shè)過原點(diǎn)的一條射線l分別與(Ⅰ)中的兩橢圓交于A、B兩點(diǎn)(點(diǎn)A在線段OB上).
①若P是線段AB上的一點(diǎn),若|OA|,|OP|,|OB|成等比數(shù)列,求P點(diǎn)的軌跡方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為Sna1=1,a4=8,Sn=b•qn+c(q≠0,q≠±1,bc≠0,b+c=0),現(xiàn)把數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀.記A(m,n)為第m行從左起第n個(gè)數(shù)(m、n∈N*).有下列命題:
①{an}為等比數(shù)列且其公比q=±2;
②當(dāng)n=2m(m>3)時(shí),A(m,n)不存在;
a28=A(6,9),A(11,1)=2100;
④假設(shè)m為大于5的常數(shù),且A(m,1)=am1,A(m,2)=am2A(m,k)=amk,其中amk為A(m,n)的最大值,從所有m1,m2,m3,…,mk中任取一個(gè)數(shù),若取得的數(shù)恰好為奇數(shù)的概率為
m-12m-1
,則m必然為偶數(shù).
其中你認(rèn)為正確的所有命題的序號是
②③④
②③④

查看答案和解析>>

 

說明:

    一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則.

    二、對計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基礎(chǔ)知識和基本運(yùn)算,每小題5分,滿分60分.

1. A   2. D   3. C   4. C   5. B   6. D   7. B   8. A   9. C   10. D   11. B   12. C

二、填空題:本題考查基礎(chǔ)知識和基本運(yùn)算,每小題4分,滿分16分.

13. 6ec8aac122bd4f6e        14. 6ec8aac122bd4f6e         15. 6ec8aac122bd4f6e         16. 6ec8aac122bd4f6e

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

17. 本題主要考查三角函數(shù)的基本公式,考查運(yùn)算能力. 滿分12分.

解:(Ⅰ)在6ec8aac122bd4f6e中,因?yàn)?sub>6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e.   ……………………………(3分)

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e.  …………………………(6分)

(Ⅱ)根據(jù)正弦定理得:6ec8aac122bd4f6e

所以6ec8aac122bd4f6e. ……………………………(9分)

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e. ………………………………………………………(12分)

18.本題主要考查直線與平面的位置關(guān)系,考查空間想像能力,推理論證能力和運(yùn)算求解能

力. 滿分12分.

解:(Ⅰ)因?yàn)槠矫鍭BCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE,

因?yàn)镚是等邊三角形ABE的邊AE的中點(diǎn),所以BG⊥AE,……………(2分)

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e     6ec8aac122bd4f6e.…………………………………………(4分)

(Ⅱ)取DE中點(diǎn)M,連結(jié)MG、FM,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e因?yàn)镸G  6ec8aac122bd4f6eAD,BF  6ec8aac122bd4f6eAD,所以MG BF,

四邊形FBGM是平行四邊形,所以BG//FM.(6分)

又因?yàn)镕M6ec8aac122bd4f6e平面EFD,BG6ec8aac122bd4f6e平面EFD,

所以BG//平面EFD.         ………………(8分)

(Ⅲ)因?yàn)镈A⊥平面ABE,BG6ec8aac122bd4f6e平面ABE,所以DA⊥BG. …………………(9分)

   又BG⊥AE,AD6ec8aac122bd4f6eAE=A,

   所以BG⊥平面DAE,又AP6ec8aac122bd4f6e平面DAE,………………………………(11分)

   所以BG⊥AP.    ……………………………………………………………(12分)

19. 本題主要考查等差數(shù)列、等比數(shù)列的基本知識,考查運(yùn)算求解能力及推理能力. 滿分12分.

解:(Ⅰ)設(shè)該等差數(shù)列的公差為6ec8aac122bd4f6e,依題意得:6ec8aac122bd4f6e  ………(2分)

解得:6ec8aac122bd4f6e  ………………………………………………………(4分)

所以數(shù)列6ec8aac122bd4f6e的通項(xiàng)公式為6ec8aac122bd4f6e.   ………………………………(6分)

(Ⅱ)依題意得:6ec8aac122bd4f6e………………(9分)

6ec8aac122bd4f6e.  ………(12分)

20. 本題主要考查概率、統(tǒng)計(jì)的基本知識,考查應(yīng)用意識. 滿分12分.

解:(Ⅰ)設(shè)每個(gè)報(bào)名者能被聘用的概率為P,依題意有:

6ec8aac122bd4f6e.

答:每個(gè)報(bào)名者能被聘用的概率為0.02.  ………………………………………(4分)

(Ⅱ)設(shè)24名筆試者中有x名可以進(jìn)入面試,依樣本估計(jì)總體可得:

    6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,從表中可知面試的切線分?jǐn)?shù)大約為80分.

答:可以預(yù)測面試的切線分?jǐn)?shù)大約為80分.  ……………………………………(8分)

(Ⅲ)從聘用的四男、二女中選派兩人的基本事件有:(a,b),( a,c) , (a, d) ,( a, e) ,

(a, f) ,( b, c) ,(b,d),( b, e) ,( b, f) ,(c, d) ,(c, e),( c, f) ,( d, e) ,( d, f) ,(e, f),共15種.

選派一男一女參加某項(xiàng)培訓(xùn)的種數(shù)有:

     (a,e) ,( a, f) , (b,e) ,(b, f),(c,e),(c, f) ,(d,e) ,(d, f),共8種

所以選派結(jié)果為一男一女的概率為6ec8aac122bd4f6e.

答:選派結(jié)果為一男一女的概率為6ec8aac122bd4f6e.       …………………………………(12分)

21.本題主要考查圓、直線與橢圓的位置關(guān)系等基本知識,考查運(yùn)算求解能力和分析問題、

解決問題的能力. 滿分12分

解:(Ⅰ)由已知得,6ec8aac122bd4f6e,所以6ec8aac122bd4f6e

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e,橢圓C的方程為6ec8aac122bd4f6e   ………(3分)

因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e,可求得6ec8aac122bd4f6e6ec8aac122bd4f6e,…(5分)

所以6ec8aac122bd4f6e的外接圓D的方程是6ec8aac122bd4f6e6ec8aac122bd4f6e

………………………………………………………………(7分)(少一解扣1分)

(Ⅱ)當(dāng)直線6ec8aac122bd4f6e的斜率不存在時(shí),由(Ⅰ)得6ec8aac122bd4f6e,6ec8aac122bd4f6e

可得6ec8aac122bd4f6e,所以6ec8aac122bd4f6e.…………………………………(8分)

當(dāng)直線6ec8aac122bd4f6e的斜率存在時(shí),設(shè)其斜率為6ec8aac122bd4f6e,顯然6ec8aac122bd4f6e,

則直線6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,設(shè)點(diǎn)6ec8aac122bd4f6e,

6ec8aac122bd4f6e代入方程6ec8aac122bd4f6e,并化簡得:

6ec8aac122bd4f6e    ……………………………………(9分)

可得:6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,     ……………………(10分)

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e

綜上,6ec8aac122bd4f6e.  ………………………………………………………(12分)

22.本題主要考查函數(shù)的單調(diào)性、極值、最值、不等式、方程的解等基本知識,考查運(yùn)用導(dǎo)

數(shù)研究函數(shù)性質(zhì)的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.

解:(Ⅰ)依題意,知6ec8aac122bd4f6e的定義域?yàn)?sub>6ec8aac122bd4f6e.    …………………………………(1分)

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,

6ec8aac122bd4f6e.    ………………………………(2分)

6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e單調(diào)遞增;

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e單調(diào)遞減. ……………………………(3分)

所以6ec8aac122bd4f6e的極大值為6ec8aac122bd4f6e,此即為最大值 . ……………………(4分)

(Ⅱ)6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e,在6ec8aac122bd4f6e上恒成立,………………(6分)

所以6ec8aac122bd4f6e6ec8aac122bd4f6e…………………………………(7分)

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e取得最大值6ec8aac122bd4f6e.所以6ec8aac122bd4f6e. ………………(9分)

(Ⅲ)因?yàn)榉匠?sub>6ec8aac122bd4f6e有唯一實(shí)數(shù)解,所以6ec8aac122bd4f6e有唯一實(shí)數(shù)解.設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e.

6ec8aac122bd4f6e,得6ec8aac122bd4f6e

因?yàn)?sub>6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e(舍去),6ec8aac122bd4f6e, ………(10分)

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e單調(diào)遞減,

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e單調(diào)遞增.

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,6ec8aac122bd4f6e取最小值6ec8aac122bd4f6e.  ……………………(11分)

因?yàn)?sub>6ec8aac122bd4f6e有唯一解,所以6ec8aac122bd4f6e

6ec8aac122bd4f6e,即6ec8aac122bd4f6e

所以6ec8aac122bd4f6e

因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e. …………………………(12分)

設(shè)函數(shù)6ec8aac122bd4f6e,

因?yàn)楫?dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e是增函數(shù),所以6ec8aac122bd4f6e至多有一解.  ………(13分)

因?yàn)?sub>6ec8aac122bd4f6e,所以方程6ec8aac122bd4f6e的解為6ec8aac122bd4f6e,即6ec8aac122bd4f6e

解得6ec8aac122bd4f6e                ……………………………………………(14分)

 

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習(xí)冊答案