題目列表(包括答案和解析)
(本小題滿分12分)如圖,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分別為棱AB、BC的中點, M為棱AA1上的點,二面角M―DE―A為30°.
(1)求MA的長;w.w.w.k.s.5.u.c.o.m
(2)求點C到平面MDE的距離。
(本小題滿分12分)某校高2010級數(shù)學培優(yōu)學習小組有男生3人女生2人,這5人站成一排留影。
(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙兩人不相鄰的站法有多少種?
(3)求甲不站最左端且乙不站最右端的站法有多少種 ?
(本小題滿分12分)
某廠有一面舊墻長14米,現(xiàn)在準備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?
(本小題滿分12分)
已知a,b是正常數(shù), a≠b, x,y(0,+∞).
(1)求證:≥,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m
(2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.
(本小題滿分12分)
已知a=(1,2), b=(-2,1),x=a+b,y=-ka+b (kR).
(1)若t=1,且x∥y,求k的值;
(2)若tR +,x?y=5,求證k≥1.
理科數(shù)學參考答案和評分標準
一、選擇題 BCDC BCBD DADC
二、填空題 13.2 14.12+π 15.2 16.100
三、解答題
17.解:當±≠kπ+時,1分
有:f(x)=2sin(+)?cos +tan(+)?tan(-)
=sin x+2cos2-1=sin x+cos x=sin(x+).4分
(1)令-+2kπ≤x+≤+2kπ,得2kπ-≤x≤2kπ+.
又由±≠kπ+,得x≠2kπ±.6分
∴f(x)的單調(diào)增區(qū)間是:[2kπ-,2kπ-),(2kπ-,2kπ+](k∈Z).8分
(2)當x∈[0,)時,x+∈[,),則sin(x+)有最小值.10分
此時f(x)min=1,故由題意得1-m>1⇒m<0.12分
18.解:(1)四人恰好買到同一只股票的概率P1=6××××=.4分
(2)(法一)四人中有兩人買到同一只股票的概率P2==.
四人中每人買到不同的股票的概率P3===.
所以四人中至多有兩人買到同一只股票的概率P=P2+P3=+==.8分
(法二)四人中有三人恰好買到同一只股票的概率P4===.
所以四人中至多有兩人買到同一只股票的概率P=1-P1-P4==.8分
(3)每股今天獲利錢數(shù)ξ的分布列為:
ξ
2
0
-2
P
0.6
0.2
0.2
所以,10手股票在今日交易中獲利錢數(shù)的數(shù)學期望為
1000Eξ=1000×[2×0.6+0×0.2+(-2)×0.2]=800.12分
19.解:(法一)(1)∵AC1=2,∴∠A
以O(shè)為坐標原點,建立如圖空間直角坐標系.2分
則A(0,-1,0),B(,0,0),A1(0,0,),C(0,1,0),B1(,1,).
∴=(,1,0),=(,2,),=(0,2,0).
設(shè)平面AB
由cos〈,n〉=-得:棱A1B1與平面AB
(2)設(shè)存在點P符合,且點P坐標設(shè)為P(0,y,z),7分
=+=(-2,0,0),∴D(-,0,0).
∴=(,y,z).平面AB
∴?n=0,得z=,由=λ得:∴y=0,∴P(0,0,).10分
又DP⊄平面AB
(法二)(1)如圖可得,B
∴AB1=,AC=2,∴AC⊥B
設(shè)B到平面AB
設(shè)棱AB與平面AB
又AB∥A1B1,∴A1B1與平面AB
(2)=+,∴四邊形ABCD是平行四邊形,∴==,8分
∴CDA1B1是平行四邊形.∴A1D∥B
又A1D⊄面AB
∴A1D∥平面AB
20.解:(1)設(shè)d、q分別為數(shù)列{an}、數(shù)列{bn}的公差與公式.
由題意知,a1=1,a2=1+d,a3=1+2d,等比數(shù)列{bn}的前三項是2,2+d,4+2d,
∴(2+d)2=2(4+2d)⇒d=±2.2分
∵an+1>an,∴d>0.∴d=2,∴an=2n-1(n∈N*).4分
由此可得b1=2,b2=4,q=2,∴bn=2n(n∈N*).5分
(2)Tn=++…+=+++…+,①
當n=1時,Tn=+++…+.、
①-②,得:Tn=+2(++…+)-=+(1-)-.
∴Tn=3--=3-.9分
∴Tn+-=3-<3.10分
∴滿足條件Tn+-<c(c∈Z)恒成立的最小整數(shù)值為c=3.12分
21.解:(1)在Rt△F1MF2中,|OM|==2知c=2,
則解得a2=6,b2=2,∴橢圓方程為+=1.4分
(2)設(shè)N(m,n)(m≠0),l為y=x+t,A(x1,y1),B(x2,y2),
由y=x+t與+=1得(+)x2+tx+-1=0,6分
由點N(m,n)在橢圓上知,+=代入得+tx+-1=0,
∴x1+x2=-mnt,x1x2=m2(-1),①8分
∴kNA+kNB=+=
=
將①式代入得kNA+kNB=,
又∵NA、NB與x軸圍成的三角形是等腰三角形得kNA+kNB=0,10分
∴n2=1代入+=1得m2=3,∴N(±,±1).12分
22.解:(1)f′(x)=-(x>0).依題意f′(x)<0在x>0時有解,即ax2+2x-1>0在x>0有解.則Δ=4+
此時,-1<a<0.4分
(2)a=-,f(x)=-x+b⇔x2-x+ln x-b=0.
設(shè)g(x)=x2-x+ln x-b(x>0),則g′(x)=.列表:
x
(0,1)
1
(1,2)
2
(2,4)
g′(x)
+
0
-
0
+
g(x)
?
極大值
?
極小值
?
∴g(x)極小值=g(2)=ln 2-b-2,g(x)極大值=g(1)=-b-,g(4)=-b-2+2ln 2.6分
∵方程g(x)=0在[1,4]上恰有兩個不相等的實數(shù)根,
則解得:ln 2-2<b≤-.9分
(3)設(shè)h(x)=ln x-x+1,x∈[1,+∞),則h′(x)=-1≤0,
∴h(x)在[1,+∞)為減函數(shù),且h(x)max=h(1)=0,故當x≥1時有l(wèi)n x≤x-1.
∵a1=1,假設(shè)ak≥1(k∈N*),則ak+1=ln ak+ak+2>1,故an≥1(n∈N*).
從而an+1=ln an+an+2≤2an+1,∴1+an+1≤2(1+an)≤…≤2n(1+a1).
即1+an≤2n,∴an≤2n-1.14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com