已知平面α與β所成的角為80°.P為α.β外的一定點.過點P的直線與α.β所成的角都是30°.則這樣的直線有且僅有A.1條 B.2條 C.3條 D.4條 查看更多

 

題目列表(包括答案和解析)

已知平面αβ所成的二面角為80°,Pα、β外一定點,過點P的一條直線與α、β所成的角都是30°,則這樣的直線有且僅有( 。

A.1條       B.2條        C.3條         D.4條

查看答案和解析>>

已知平面αβ所成的二面角為80°,Pα、β外一定點,過點P的一條直線與α、β所成的角都是30°,則這樣的直線有且僅有(  )

A.1條                                        B.2條

C.3條                                        D.4條

查看答案和解析>>

已知平面α與β所成的二面角為80°,P為α、β外一定點,過點P的一條直線與α、β所成的角都是30°,則這樣的直線有且僅有(    )

A.1條                   B.2條                  C.3條                   D.4條

查看答案和解析>>

已知平面α與β所成的二面角為80°,P為α、β外一定點,過點P的一條直線與α、β所成的角都是30°,則這樣的直線有且僅有


  1. A.
    1條
  2. B.
    2條
  3. C.
    3條
  4. D.
    4條

查看答案和解析>>

已知平面α與β所成的二面角為80°,P為α、β外一定點,過點P的一條直線與α、β所成的角都是30°,則這樣的直線有且僅有
[     ]
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

文科數(shù)學參考答案和評分標準

 

1.B 2.C 3.D 4.C 5.B 6.C 7.B 8.D 9.D 10.A 11.D 12.C

13.1 14.2 15.2 16.

17.解:f(x)=2sin(+)?cos-1

=sin x+2cos2-1=sin x+cos x=sin(x+).4分

(1)令-+2kπ≤x+≤+2kπ,得2kπ-≤x≤2kπ+.

∴f(x)的單調(diào)增區(qū)間是[2kπ-,2kπ+](k∈Z).8分

(2)當x∈[0,)時,x+∈[,),則sin(x+)有最小值,

此時f(x)min=1,故由題意得1-m>1⇒m<0.12分

18.解:(1)四人恰好買到同一支股票的概率P1=6××××=.6分

(2)四人中有三人恰好買到同一支股票的概率P2===.

所以四人中至少有三人買到同一支股票的概率P=P1+P2==.12分

19.解:(1)∵AC1=2,∴∠A1AC=60°.

又∵側(cè)面A1ACC1⊥底面ABC,作A1O⊥AC于點O,則A1O⊥平面ABC,2分

可得AO=1,A1O=,∵正△ABC的面積SABC=3,

∴三棱柱ABC―A1B1C1的體積V=A1O?SABC=?=36分

(2)(法一):以O為坐標原點,建立如圖空間直角坐標系.

∵AO=1,BO⊥AC.則A(0,-1,0),B(,0,0),A1(0,0,),C(0,1,0),B1(,1,).

∴=(,1,0),=(,2,),=(0,2,0).

設平面AB1C的法向量為n=(x,y,1),由

解得n=(-1,0,1),10分

由cos〈,n〉=-得:棱A1B1與平面AB1C所成角的正弦值為.12分

(2)(法二):如圖可得B1C==,△ABM中,得AM=,∴AB1=,AC=2,∴AC⊥B1C.∴S△AB1C=.設B到平面AB1C的距離是d,則有d===.9分

設棱AB與平面AB1C所成的角的大小是θ,則sin θ==,又AB∥A1B1,

∴A1B1與平面AB1C所成的角的大小是arcsin.12分

20.解:(1)設這二次函數(shù)為f(x)=ax2+bx(a≠0),則f ′(x)=2ax+b,由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.2分

又因為點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,所以Sn=3n2-2n.3分

當n≥2時,an=Sn-Sn1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.4分

當n=1時,a1=S1=3×12-2=6×1-5,5分

所以,an=6n-5(n∈N*).6分

(2)由(1)得知bn===(-),8分

故Tni=[(1-)+(-)+…+(-)]=(1-).10分

因此,要使(1-)<(n∈N*)成立,

必須且僅須滿足≤,即m≥10,所以滿足要求的最小正整數(shù)m為10.12分

21.解:(1)F′(x)=x3-3bx+3b,設g(x)=x3-3bx+3b.則g′(x)=3x2-3b=3(x2-b).2分

依題意,方程g(x)=0有三個不等實根,∴首先b>0,于是

x

(-∞,-)

(-,)

(,+∞)

g′(x)

0

0

g(x)

?

極大值

?

極小值

?

∴g(x)極大值=g(-)=2b+3b>0,g(x)極小值=g()=3b-2b.

依題意:g()<0.解得b>.6分

(2)依題意:g(x)≥0對∀x∈[1,2]恒成立.

①若b≤1時,則g′(x)≥0,x∈[1,2].此時g(x)min=g(1)=1>0.符合.8分

②若1<b<4時,則g′(x)=0得x=.當x∈(1,)時,有g(shù)′(x)<0;

當x∈(,2)時,有g(shù)′(x)>0.

∴g(x)min=g()=3b-2b≥0.解得1<b≤.10分

③若b≥4時,則g′(x)≤0.∴g(x)min=g(2)=8-3b≥0⇒b≤,矛盾.

綜上,b的取值范圍是b≤.12分

22.解:(1)在Rt△F1MF2中,|OM|==2知c=2,2分

則解得a2=6,b2=2.∴橢圓方程為+=1.6分

(2)設N(m,n)(m≠0),l為y=x+t,A(x1,y1),B(x2,y2),

由y=x+t與+=1得(+)x2+tx+-1=0.8分

∴x1+x2=-mnt,x1x2=m2(-1),①10分

∴kNA+kNB=+=

=,12分

將①式代入得kNA+kNB=.

又∵NA、NB與x軸圍成的三角形是等腰三角形得kNA+kNB=0,

∴n2=1代入+=1,得m2=3,∴N(±,±1).14分

 

 

 


同步練習冊答案