給出下列命題: 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①若a,b∈R+,a≠b則a3+b3>a2b+ab2
②若a,b∈R+,a<b,則
a+m
b+m
a
b

③若a,b,c∈R+,則
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,則
1
x
+
1
y
≥4+2
3

其中正確命題的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

給出下列命題:
(1)存在實數(shù)x,使sinx+cosx=
3
2

(2)若α,β是第一象限角,且α>β,則cosα<cosβ;
(3)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(4)函數(shù)f(x)=(1+cos2x)sin2x,x∈R,則f(x)是周期為
π
2
的偶函數(shù).
(5)函數(shù)y=cos(x+
π
3
)
的圖象是關(guān)于點(
π
6
,0)
成中心對稱的圖形
其中正確命題的序號是
 
 (把正確命題的序號都填上)

查看答案和解析>>

給出下列命題:
①|(zhì)
a
-
b
|≤|
a
|-|
b
|;②
a
,
b
共線,
b
,
c
平,則
a
c
為平行向量;③
a
,
b
c
為相互不平行向量,則(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,則
a
⊥(
b
-
c
)   
其中錯誤的有
 

查看答案和解析>>

給出下列命題:
①存在實數(shù)α使sinα•cosα=1成立;
②存在實數(shù)α使sinα+cosα=
3
2
成立;
③函數(shù)y=sin(
2
-2x)
是偶函數(shù);
x=
π
8
是函數(shù)y=sin(2x+
4
)
的圖象的一條對稱軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號是
 
(注:把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

2、給出下列命題:
(1)直線a與平面α不平行,則a與平面α內(nèi)的所有直線都不平行;
(2)直線a與平面α不垂直,則a與平面α內(nèi)的所有直線都不垂直;
(3)異面直線a、b不垂直,則過a的任何平面與b都不垂直;
(4)若直線a和b共面,直線b和c共面,則a和c共面.其中錯誤命題的個數(shù)為
3

查看答案和解析>>

 

1-5  A D B D B    6-10 B B C C B

11. 6ec8aac122bd4f6e.  12.6ec8aac122bd4f6e 13. 6ec8aac122bd4f6e   14. 60     15. ①③

16.解:(Ⅰ)∵6ec8aac122bd4f6e-

   6ec8aac122bd4f6e

6ec8aac122bd4f6e,(3分)

 ∴6ec8aac122bd4f6e

     又已知點6ec8aac122bd4f6e6ec8aac122bd4f6e的圖像的一個對稱中心!6ec8aac122bd4f6e

     而6ec8aac122bd4f6e  (6分)

     (Ⅱ)若6ec8aac122bd4f6e,

      6ec8aac122bd4f6e  (9分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

即m的取值范圍是6ec8aac122bd4f6e  (12分)

17. 解:(1)由已知得6ec8aac122bd4f6e,∵6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e6ec8aac122bd4f6e是方程6ec8aac122bd4f6e的兩個根,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e       ………………6分

(2)6ec8aac122bd4f6e的可能取值為0,100,200,300,400

6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e的分布列為:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e………12分

18解法一:

   (1)延長C1F交CB的延長線于點N,連接AN。因為F是BB1的中點,

6ec8aac122bd4f6e    所以F為C1N的中點,B為CN的中點。????2分

    又M是線段AC1的中點,故MF∥AN。?????3分

    又MF6ec8aac122bd4f6e平面ABCD,AN6ec8aac122bd4f6e平面ABCD

    ∴MF∥平面ABCD。  ???5分

   (2)證明:連BD,由直四棱柱ABCDA1B1C1D1

    可知A1A⊥平面ABCD,又∵BD6ec8aac122bd4f6e平面ABCD,

    ∴A1ABD!咚倪呅蜛BCD為菱形,∴ACBD。

    又∵ACA1A=A,AC,AA6ec8aac122bd4f6e平面ACC1A1

    ∴BD⊥平面ACC1A1。                  ?????????????????7分

    在四邊形DANB中,DA∥BN且DA=BN,所以四邊形DANB為平行四邊形

    故NA∥BD,∴NA⊥平面ACC1A1,又因為NA6ec8aac122bd4f6e平面AFC1

    ∴平面AFC1ACC1A1

   (3)由(2)知BD⊥ACC1A1,又AC16ec8aac122bd4f6eACC1A1,∴BD⊥AC1,∴BD∥NA,∴AC1⊥NA。

    又由BD⊥AC可知NA⊥AC,

    ∴∠C1AC就是平面AFC1與平面ABCD所成二面角的平面角或補角。???10分

    在Rt△C1AC中,tan6ec8aac122bd4f6e,故∠C1AC=30°???12分

    ∴平面AFC1與平面ABCD所成二面角的大小為30°或150°。???12分

19.解:(Ⅰ)因為6ec8aac122bd4f6e成等差數(shù)列,點6ec8aac122bd4f6e的坐標(biāo)分別為6ec8aac122bd4f6e所以6ec8aac122bd4f6e6ec8aac122bd4f6e

由橢圓的定義可知點6ec8aac122bd4f6e的軌跡是以6ec8aac122bd4f6e為焦點長軸為4的橢圓(去掉長軸的端點),

所以6ec8aac122bd4f6e.故頂點6ec8aac122bd4f6e的軌跡6ec8aac122bd4f6e方程為6ec8aac122bd4f6e.…………4分

(Ⅱ)由題意可知直線6ec8aac122bd4f6e的斜率存在,設(shè)直線6ec8aac122bd4f6e方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,

設(shè)6ec8aac122bd4f6e兩點坐標(biāo)分別為6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,所以線段CD中點E的坐標(biāo)為6ec8aac122bd4f6e,故CD垂直平分線l的方程為6ec8aac122bd4f6e,令y=0,得6ec8aac122bd4f6e6ec8aac122bd4f6e軸交點的橫坐標(biāo)為6ec8aac122bd4f6e,由6ec8aac122bd4f6e6ec8aac122bd4f6e,解得6ec8aac122bd4f6e,

又因為6ec8aac122bd4f6e,所以6ec8aac122bd4f6e.當(dāng)6ec8aac122bd4f6e時,有6ec8aac122bd4f6e,此時函數(shù)6ec8aac122bd4f6e遞減,所以6ec8aac122bd4f6e.所以,6ec8aac122bd4f6e

故直線6ec8aac122bd4f6e6ec8aac122bd4f6e軸交點的橫坐標(biāo)的范圍是6ec8aac122bd4f6e.           ………………12分

20.解:(1)因為6ec8aac122bd4f6e

所以設(shè)S=6ec8aac122bd4f6e6ec8aac122bd4f6e(1)

        S=6ec8aac122bd4f6e……….(2)(1)+(2)得:

6ec8aac122bd4f6e   =6ec8aac122bd4f6e,   所以S=3012

(2)由6ec8aac122bd4f6e兩邊同減去1,得6ec8aac122bd4f6e

所以6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e,6ec8aac122bd4f6e是以2為公差以6ec8aac122bd4f6e為首項的等差數(shù)列,

所以6ec8aac122bd4f6e6ec8aac122bd4f6e

(3)因為6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e6ec8aac122bd4f6e

所以6ec8aac122bd4f6e

>6ec8aac122bd4f6e

21.解:(1)∵ 6ec8aac122bd4f6e ∴6ec8aac122bd4f6e…1分

    設(shè)6ec8aac122bd4f6e 6ec8aac122bd4f6e6ec8aac122bd4f6e  ……2分

6ec8aac122bd4f6e6ec8aac122bd4f6e上為減函數(shù)  又6ec8aac122bd4f6e    6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e上是減函數(shù)………4分(2)①

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e ∴6ec8aac122bd4f6e…………………………………6分

6ec8aac122bd4f6e又≤6ec8aac122bd4f6e6ec8aac122bd4f6e對一切6ec8aac122bd4f6e恒成立 ∴6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e        ……………8分

②顯然當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時,不等式成立                 …………………………9分

當(dāng)6ec8aac122bd4f6e,原不等式等價于6ec8aac122bd4f6e6ec8aac122bd4f6e ………10分

下面證明一個更強的不等式:6ec8aac122bd4f6e6ec8aac122bd4f6e…①

6ec8aac122bd4f6e6ec8aac122bd4f6e……②亦即6ec8aac122bd4f6e6ec8aac122bd4f6e …………………………11分

由(1) 知6ec8aac122bd4f6e6ec8aac122bd4f6e上是減函數(shù)   又6ec8aac122bd4f6e  ∴6ec8aac122bd4f6e……12分

∴不等式②成立,從而①成立  又6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合上面∴6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e時,原不等式成立     ……………………………14分

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習(xí)冊答案
<code id="jbdzg"><tbody id="jbdzg"><ul id="jbdzg"></ul></tbody></code>