(1)當n=3時.求x=3.y=0的概率, 查看更多

 

題目列表(包括答案和解析)

甲有一只放有x個紅球,y個黃球,z個白球的箱子,且x+y+z=6(x、y、z∈N),乙有一只放有3個紅球,2個黃球,1個白球的箱子,兩人各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝.

(1)用x、y、z表示甲勝的概率;

(2)若又規(guī)定當甲取紅、黃、白球而勝的得分分別為1,2,3分,否則得0分.求甲得分的期望的最大值及此時x、y、z的值.

查看答案和解析>>

甲有一只放有x個紅球,y個黃球,z個白球,且x+y+z=6(x,y,z∈N);乙有一只放有3個紅球,2個黃球,1個白球的箱子,兩人各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝.

(Ⅰ)用x,y,z表示甲勝的概率;

(Ⅱ)若規(guī)定甲取紅,黃,白而勝的得分分別為1,2,3分,否則得0分,求甲得分的期望的最大值及此時x,y,z的值.

查看答案和解析>>

甲有一只放有x個紅球,y個黃球,z個白球的箱子,且x+y+z=6(x,y,z∈N),乙有一只放有3個紅球,2個黃球,1個白球的箱子,兩個各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝.

(1)用x、y、z表示甲勝的概率;

(2)若又規(guī)定當甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值.

查看答案和解析>>

(理)甲有一只放有x個紅球,y個黃球,z個白球的箱子,且x+y+a=6(x,y,z∈N),乙有一只放有3個紅球,2個黃球,1個白球的箱子,兩個各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝.

(1)用x、y、z表示甲勝的概率;

(2)若又規(guī)定當甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分.求甲得分的期望的最大值及此時x、y、z的值.

查看答案和解析>>

下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設擲n次后,甲、乙盒內的球數(shù)分別為x、y.
(1)當n=3時,設x=3,y=0的概率;
(2)當n=4時,設|x-y|=ξ,求ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空題:

13.           14.         15.     2個      16.       

三、解答題:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分條件        解得     ………12分

18.由題意知,在甲盒中放一球概率為時,在乙盒中放一球的概率為  …2分

①當時,,的概率為               ………4分

②當時,,又,所以的可能取值為0,2,4

(?)當時,有,它的概率為    ………6分

(?)當 時,有 , ,

它的概率為

(?)當時,有

     它的概率為

的分布列為

  

0

2

4

P

 

 的數(shù)學期望        …………12分

19.解:(1) 連接 于點E,連接DE, ,

 四邊形 為矩形, 點E為 的中點,

       平面                 ……………6分

(2)作于F,連接EF

,D為AB中點,,

     EF為BE在平面內的射影

為二面角的平面角.

     

二面角的余弦值  ………12分

20.(1)據(jù)題意的

                        ………4分

                      ………5分

(2)由(1)得:當時,

    

     當時,,為增函數(shù)

    當時,為減函數(shù)

時,      …………………………8分

時,

時,

時,                   …………………………10分

綜上知:當時,總利潤最大,最大值為195  ………………12分

21.解:(1)由橢圓定義可得,由可得

,而

解得                                   ……………………4分

(2)由,得,

解得(舍去)     此時

當且僅當時,得最小值

此時橢圓方程為         ………………………………………8分

(3)由知點Q是AB的中點

設A,B兩點的坐標分別為,中點Q的坐標為

,兩式相減得

      AB的中點Q的軌跡為直線

且在橢圓內的部分

又由可知,所以直線NQ的斜率為,

方程為

①②兩式聯(lián)立可求得點Q的坐標為

點Q必在橢圓內          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)證明:

為遞減數(shù)列

時,取最大值          

由(1)中知     

綜上可知

(3)

欲證:即證

,構造函數(shù)

時,

函數(shù)內遞減

內的最大值為

時,

       

不等式成立

 

 


同步練習冊答案