∴的方程為 即 ----------8分知 ∴ ----------10 分 查看更多

 

題目列表(包括答案和解析)

假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)y(萬(wàn)元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對(duì)x呈線(xiàn)性相關(guān)關(guān)系.試求:

(1)線(xiàn)性回歸方程;

(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?思路分析:本題考查線(xiàn)性回歸方程的求法和利用線(xiàn)性回歸方程求兩變量間的關(guān)系.

解:(1)

i

1

2

3

4

5

xi

2

3

4

5

6

yi

2.2

3.8

5.5

6.5

7.0

xiyi

4.4

11.4

22.0

32.5

42.0

b==1.23,

a=-b=5-1.23×4=0.08.

所以,回歸直線(xiàn)方程為=1.23x+0.08.

(2)當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬(wàn)元),

即估計(jì)使用10年時(shí)維修費(fèi)約為12.38萬(wàn)元.

查看答案和解析>>

已知點(diǎn)),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn),切點(diǎn)分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線(xiàn)相切,求圓的方程;

(Ⅲ)若直線(xiàn)的方程是,且以點(diǎn)為圓心的圓與直線(xiàn)相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線(xiàn)的的方程以及性質(zhì)的運(yùn)用。直線(xiàn)與圓的位置關(guān)系的運(yùn)用。

中∵直線(xiàn)與曲線(xiàn)相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線(xiàn)的方程,再利用點(diǎn)P到直線(xiàn)的距離為半徑,從而得到圓的方程。

(3)∵直線(xiàn)的方程是,,且以點(diǎn)為圓心的圓與直線(xiàn)相切∴點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線(xiàn)與曲線(xiàn)相切,且過(guò)點(diǎn),∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線(xiàn)的方程為:,又,

,即. -----------------7分

∵點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線(xiàn)的方程是,,且以點(diǎn)為圓心的圓與直線(xiàn)相切∴點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即時(shí)取等號(hào).

故圓面積的最小值

 

查看答案和解析>>


同步練習(xí)冊(cè)答案