(本小題滿分12分如圖.四面體ABCD中.O是BD的中點(diǎn).ΔABD和ΔBCD均為等邊三角形. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

如圖,四棱錐P—ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分別為CD、PB的中點(diǎn).

 
(1)求證:EF⊥平面PAB;

(2)求三棱錐的體積。.

查看答案和解析>>

(本小題滿分12分)

如圖,四棱錐P—ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分別為CD、PB的中點(diǎn).

 
(1)求證:EF⊥平面PAB;

(2)求三棱錐的體積。.

查看答案和解析>>

.(本小題滿分12分)
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).

(1)求證:DC平面ABC;
(2)設(shè),求三棱錐A-BFE的體積.

查看答案和解析>>


(本小題滿分12分)
如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD。

(I)證明:PQ⊥平面DCQ;
(II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值。

查看答案和解析>>

(本小題滿分12分)

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PDQAQA=AB=PD
(I)證明:PQ⊥平面DCQ;
(II)求棱錐QABCD的的體積與棱錐PDCQ的體積的比值.

查看答案和解析>>

一.1-5  ACDAD   6-10  DBDAB  11-12  BA

13. 28   14.       15. 1      16.  ⑴⑵⑷

17. 解:(1)∵高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,……………………………………………(2分)

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………(3分)

∴當(dāng)高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。)時(shí),高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

最小正周期為高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………………………………………(5分)

(2)∵高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………………………………………(8分)

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。…………(10分)

18.解法一:證明:連結(jié)OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過(guò)O作,連結(jié)AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴.∴二面角A-BC-D的大小為.   -------8分

       (III)解:設(shè)點(diǎn)O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點(diǎn)O到平面ACD的距離為.-----------------------------------------------------12分

        解法二:(I)同解法一.(II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

則     

       ,

.  ------------6分

設(shè)平面ABC的法向量

,

設(shè)夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設(shè)平面ACD的法向量為,又,

       .   -----------------------------------11分

設(shè)夾角為,

   則     -       設(shè)O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

19.解:(Ⅰ)記“廠家任取4件產(chǎn)品檢驗(yàn),其中至少有1件是合格品”為事件A

   用對(duì)立事件A來(lái)算,有………3分

(Ⅱ)可能的取值為

        ,………

 

 

 

 

………………9分

記“商家任取2件產(chǎn)品檢驗(yàn),都合格”為事件B,則商家拒收這批產(chǎn)品的概率

    所以商家拒收這批產(chǎn)品的概率為………………….12分

20. (1)當(dāng)   (1分)

   

為首項(xiàng),2為公比的等比例數(shù)列。(6分)

   (2)得 (7分)

  

      

。(11分)

        12分

21解(I)設(shè)

      

(Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為

      

       …………(4分)

  (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

       設(shè)

      ,得

       …………(6分)

      

      

…………………8分

注意也可用..........12分

22. 解:(1)因?yàn)?nbsp;    所以

依題意可得,對(duì)恒成立,

所以   對(duì)恒成立,

所以   對(duì)恒成立,,即

(2)當(dāng)時(shí),,單調(diào)遞減;

單調(diào)遞增;

處取得極小值,即最小值

所以要使直線與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn),

實(shí)數(shù)的取值范圍應(yīng)為,即(;

(3)當(dāng)時(shí),由可知,上為增函數(shù),

當(dāng)時(shí),令,則,故,

所以

相加可得

又因?yàn)?sub>

所以對(duì)大于1的任意正整書(shū)

 

 

 

 


同步練習(xí)冊(cè)答案