(1)求證:EF∥平面CB1D1,(2)求證:平面CAA1C1⊥平面CB1D1 查看更多

 

題目列表(包括答案和解析)

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.

(1)求證:EF∥平面CB1D1;

(2)求證:平面CAA1C1⊥平面CB1D1

 

查看答案和解析>>

在正方體ABCDA1B1C1D1中,E、F為棱ADAB的中點.

(1)求證:EF∥平面CB1D1;

(2)求證:平面CAA1C1⊥平面CB1D1

 

 

 

查看答案和解析>>

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

B、C、C、C、B、B、C、B、C、B

11、  12、   13、25   14、①、②    15、若,則

,則

16、證明:(1)連結(jié)BD,由EF//BD,BD//B1D1知EF// B1D1,又,

           所以

         (2)因為

          所以,且

          故平面CAA1C1⊥平面CB1D1

18、解:略  反射光線所在的直線方程是

19、解:略   當水池寬為40m時,總造價最低,最低總造價為297600元。

20、解:(1)函數(shù)的定義域是R,假設存在實數(shù)a,使函數(shù)f(x)為奇函數(shù),則有

,解得a=1,故命題成立。

(2)證明略

 


同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷