題目列表(包括答案和解析)
解關于的不等式:
【解析】解:當時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image004.png">,即
(2分)
當時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image007.png">
(5分) 若
時,
的解為
(7分)
若時,
的解為
(9分) 若
時,
無解(10分) 若
時,
的解為
(12分綜上所述
當時,原不等式的解為
當時,原不等式的解為
當時,原不等式的解為
當時,原不等式的解為
當時,原不等式的解為:
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區(qū)間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數(shù)m的取值范圍是
或
已知函數(shù) R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
|
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com