闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤濠€閬嶅焵椤掑倹鍤€閻庢凹鍙冨畷宕囧鐎c劋姹楅梺鍦劋閸ㄥ綊宕愰悙宸富闁靛牆妫楃粭鍌滅磼閳ь剚绗熼埀顒€鐣峰⿰鍫晣闁绘垵妫欑€靛矂姊洪棃娑氬婵☆偅顨嗛幈銊槾缂佽鲸甯¢幃鈺呭礃閼碱兛绱濋梻浣虹帛娓氭宕抽敐鍡樺弿闁逞屽墴閺屾洟宕煎┑鍥舵¥闂佸憡蓱閹瑰洭寮婚埄鍐ㄧ窞閻忕偞鍨濆▽顏呯節閵忋垺鍤€婵☆偅绻傞悾宄扳攽閸♀晛鎮戦梺绯曞墲閸旀帞鑺辨繝姘拺闁告繂瀚埀顒佹倐閹ê鈹戠€e灚鏅滃銈嗗姂閸婃澹曟總绋跨骇闁割偅绋戞俊鐣屸偓瑙勬礀閻ジ鍩€椤掑喚娼愭繛鍙夅缚閺侇噣骞掑Δ瀣◤濠电娀娼ч鎰板极閸曨垱鐓㈡俊顖欒濡插嘲顭跨憴鍕婵﹥妞藉畷銊︾節閸曨厾绐楅梻浣呵圭€涒晜绻涙繝鍥х畾閻忕偠袙閺嬪酣鏌熼幆褜鍤熼柛姗€浜跺娲传閸曨剙鍋嶉梺鍛婃煥閻倿骞冨鈧幃鈺呮偨閻㈢绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁诡垎鍐f寖缂備緡鍣崹鎶藉箲閵忕姭妲堥柕蹇曞Х椤撴椽姊洪崫鍕殜闁稿鎹囬弻娑㈠Χ閸涱垍褔鏌$仦鍓ф创濠碉紕鍏橀、娆撴偂鎼存ɑ瀚介梻鍌欐祰濡椼劎绮堟担璇ユ椽顢橀姀鐘烘憰闂佸搫娴勭槐鏇㈡偪閳ь剟姊洪崫鍕窛闁稿⿴鍋婃俊鐑芥晜鏉炴壆鐩庨梻浣瑰濡線顢氳閳诲秴顓兼径瀣幍濡炪倖姊婚悺鏂库枔濠婂應鍋撶憴鍕妞ゃ劌妫楅銉╁礋椤掑倻鐦堟繛杈剧到婢瑰﹤螞濠婂牊鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛径鎰伋閻℃帊鐒﹀浠嬪极閸愵喖纾兼慨妯诲敾缁卞崬鈹戦悩顔肩伇闁糕晜鐗犲畷婵嬪即閵忕姴寮烽梺闈涱槴閺呮粓鎮¢悢鍏肩厵闂侇叏绠戦弸娑㈡煕閺傛鍎旈柡灞界Ч閺屻劎鈧綆浜炴导宀勬⒑鐠団€虫灈缂傚秴锕悰顔界瑹閳ь剟鐛幒妤€绠f繝鍨姉閳ь剝娅曠换婵嬫偨闂堟稐绮堕梺鐟板暱缁绘ê鐣峰┑鍡忔瀻闁规儳鐤囬幗鏇㈡⒑缂佹ɑ鈷掗柛妯犲懐鐭嗛柛鏇ㄥ灡閻撳繘鏌涢锝囩畺妞ゃ儲绮嶉妵鍕疀閵夛箑顏�
11.(理)某城市新修建的一條道路上有12盞路燈.為了節(jié)省用電而又闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存い銏℃礋閺佹劙宕卞▎妯恍氱紓鍌欒兌閸嬫捇宕曢幎瑙b偓锕傛倻閽樺鎽曢梺鍝勬川閸犳挾绮绘ィ鍐╃厽闁逛即娼ф晶顖炴煟濠靛洦鈷掔紒杈ㄥ浮閹瑩顢楅埀顒勫礉閵堝鐓熼煫鍥ㄦ⒒缁犵偤鏌涢埡鍐ㄤ槐妤犵偛顑夐弫鍌炴寠婢跺鐫忛梺璇叉唉椤煤閺嶎灐褰掑磼閻愬弶杈堥梺璺ㄥ枔婵敻鍩涢幋锔界厵闁兼祴鏅涙禒婊堟煃瑜滈崜姘洪悢鐓庣畺鐟滄垹绮诲☉妯锋婵☆垵鍋愰弸鈧梻鍌欑缂嶅﹤螞閸ф鍊块柨鏇炲€哥壕濠氭倵閿濆骸鏋熼柣鎾存礃閵囧嫰骞囬崜浣瑰仹缂備胶濮甸敃銏ゅ蓟閿濆鍋勯柡澶嬪灥椤洤鈹戦纭烽練婵炲拑绲垮Σ鎰板箳閹冲磭鍠栭幖褰掑捶椤撶喎娅欓梻鍌氬€峰ù鍥敋瑜忛幑銏ゅ箣濠靛牊娈曢梺鍛婄☉閿曪絿鎹㈤崱娑欑厽闁靛繆鎳氶崷顓犵焼閻庯綆鍋佹禍婊堟煛瀹ュ啫濡介柣銊﹀灦閵囧嫰寮崠陇鍚┑顔硷龚濞咃綁骞夐幘顔肩妞ゆ巻鍋撻柛鎾崇秺濮婃椽骞栭悙鎻掝潎婵炲瓨绮忓▔娑㈩敋閿濆鏁冮柨婵嗗暙娴滄繈姊洪崨濠傚闁哄懏绻堝畷銏$鐎n偆鍘甸梺绋跨箺閸嬫劙寮冲鈧弻娑㈠Ω閵夘喚鍚嬮悗瑙勬处閸ㄨ泛顕f繝姘ㄩ柨鏃€鍎抽獮宥夋⒒娴e憡鍟為柛顭戝灦瀹曟劙寮介鐔蜂壕婵ḿ鍋撶€氾拷查看更多

 

題目列表(包括答案和解析)

(08年濰坊市二模理)  某城市新修建的一條道路上有12盞路燈,為了節(jié)省用電而又不能影響正常的照明,可以熄滅其中的3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,則熄燈的方法有( )

  A.種    B.種    C.種    D.

查看答案和解析>>

(08年濰坊市五模理) 某城市新修建的一條道路上有12盞路燈,為了節(jié)省用電而又不能影響正常的照明,可以熄滅其中的3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,則熄燈的方法有( )

  A.種    B.種    C.種    D.

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C�。ㄎ模〢 6.B 7.A 8.B 9.A 10.B 11.(理)A�。ㄎ模〤 12.B

13.(理)�。ㄎ模�25,60,15 14.-672 15.2.5小時(shí) 16.①,④

17.設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x)、B(1+x

因?yàn)?sub>,,所以,

x的任意性得fx)的圖象關(guān)于直線x=1對稱,

m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,, ,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為

  當(dāng)時(shí),為,或

18.(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場,依題意得

  (2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

  (文)設(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

 �、偌状腥�2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

  ∴ 

19.(1)取中點(diǎn)E,連結(jié)ME、,∴ ,MCEC.∴ MC.∴ ,M,C,N四點(diǎn)共面.

  (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

  (3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 �。�4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ ,

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 �。�2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

 �。�2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

22.(1)∵ ,a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

(2),,由可得 

∴ .∴ b=5

 �。�3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ ,

  當(dāng)n≥3時(shí),

  

  

  

  ∴ . 綜上得 

 


同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷