16.設點在橢圓的長軸上.點是橢圓上任意一點.當?shù)哪W钚r.點恰好落在橢圓的右頂點.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)設橢圓C的中心在坐標原點O,焦點在x軸上,短軸長為,左焦點到左準線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設橢圓C上有不同兩點PQ,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)設橢圓C的中心在坐標原點O,焦點在x軸上,短軸長為,左焦點到左準線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設橢圓C上有不同兩點PQ,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)設橢圓C的中心在坐標原點O,焦點在x軸上,短軸長為,左焦點到左準線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設橢圓C上有不同兩點P、Q,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)

已知橢圓的焦點在軸上,中心在原點,離心率,直線和以原點為圓心,橢圓的短半軸為半徑的圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設橢圓的左、右頂點分別為,點是橢圓上異于的任意一點,設直線、的斜率分別為、,證明為定值;

(Ⅲ)設橢圓方程,、為長軸兩個端點, 為橢圓上異于、的點, 、分別為直線、的斜率,利用上面(Ⅱ)的結論得(        )(只需直接寫出結果即可,不必寫出推理過程).

查看答案和解析>>

(本小題滿分12分)

有一幅橢圓型彗星軌道圖,長4cm,高,如下圖,

已知O為橢圓中心,A1,A2是長軸兩端點,

 
太陽位于橢圓的左焦點F處.

   (Ⅰ)建立適當?shù)淖鴺讼担瑢懗鰴E圓方程,

并求出當彗星運行到太陽正上方時二者在圖上的距離;

   (Ⅱ)直線l垂直于A1A2的延長線于D點,|OD|=4,

設P是l上異于D點的任意一點,直線A1P,A2P分別

交橢圓于M、N(不同于A1,A2)兩點,問點A2能否

在以MN為直徑的圓上?試說明理由.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

20090116

答案

A

C

B

B

三、解答題:(12’+14’+15’+16’+22’=79’)

16.(理)解:設為橢圓上的動點,由于橢圓方程為,故

因為,所以

    推出

依題意可知,當時,取得最小值.而,

故有,解得

又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

17.解:(1)當時,

時,

時,;(不單獨分析時的情況不扣分)

時,

(2)由(1)知:當時,集合中的元素的個數(shù)無限;

時,集合中的元素的個數(shù)有限,此時集合為有限集.

因為,當且僅當時取等號,

所以當時,集合的元素個數(shù)最少.

此時,故集合

18.(本題滿分15分,1小題7分,第2小題8

解:(1)如圖,建立空間直角坐標系.不妨設

依題意,可得點的坐標,

    于是,,

   由,則異面直線所成角的

大小為

(2)解:連結. 由

的中點,得;

,得

,因此

由直三棱柱的體積為.可得

所以,四棱錐的體積為

19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

由此可得,

由規(guī)律②可知,,

;

又當時,,

所以,,由條件是正整數(shù),故取

    綜上可得,符合條件.

(2) 解法一:由條件,,可得

,

因為,,所以當時,,

,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

解法二:列表,用計算器可算得

月份

6

7

8

9

10

11

人數(shù)

383

463

499

482

416

319

故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

     ;

  (2)解法一:設此子數(shù)列的首項為,公比為,由條件得:,

,即    

 則 .

所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為

其通項公式為,.

解法二:由條件,可設此子數(shù)列的首項為,公比為

………… ①

又若,則對每一

都有………… ②

從①、②得;

;

因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

數(shù)列,通項公式為,

(3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設這兩個子數(shù)列的首項、公比分別為,其中,則

,

因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

【以上解答屬于層級3,可得設計分4分,解答分6分】

問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設這兩個子數(shù)列的首項、公比分別為,其中,則

………… ①

,則①,矛盾;若,則①

,矛盾;故必有,不妨設,則

………… ②

1時,②,等式左邊是偶數(shù),

右邊是奇數(shù),矛盾;

2時,②

兩個等式的左、右端的奇偶性均矛盾;

綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

【以上解答屬于層級4,可得設計分5分,解答分7分】

問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設這兩個子數(shù)列的首項、公比分別為,其中,則

,

顯然當時,上述等式成立。例如取,得:

第一個子數(shù)列:,各項和;第二個子數(shù)列:,

各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】

 


同步練習冊答案