例1.設(shè)n為正整數(shù).f(n)=5n+2×3n+1 .f(4)的值.并求其最大公約數(shù),的最大公約數(shù).并證明通過此例主要說明在“計算――猜想――證明 這一完整的思路中.證明最常用的方法是數(shù)學(xué)歸納法.練習(xí)1:求數(shù)列{n3+5n}的最大公約數(shù).并證明 查看更多

 

題目列表(包括答案和解析)

(2012•四川)記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk
③當(dāng)n≥1時,xn
a
-1

④對某個正整數(shù)k,若xk+1≥xk,則xk=[
a
]

其中的真命題有
①③④
①③④
.(寫出所有真命題的編號)

查看答案和解析>>

記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,,現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk;
③當(dāng)n≥1時,;
④對某個正整數(shù)k,若xk+1≥xk,則
其中的真命題有    .(寫出所有真命題的編號)

查看答案和解析>>

記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,,現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk;
③當(dāng)n≥1時,
④對某個正整數(shù)k,若xk+1≥xk,則
其中的真命題有    .(寫出所有真命題的編號)

查看答案和解析>>

記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,,現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk
③當(dāng)n≥1時,;
④對某個正整數(shù)k,若xk+1≥xk,則
其中的真命題有    .(寫出所有真命題的編號)

查看答案和解析>>

記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,,現(xiàn)有下列命題:
①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk;
③當(dāng)n≥1時,;
④對某個正整數(shù)k,若xk+1≥xk,則
其中的真命題有    .(寫出所有真命題的編號)

查看答案和解析>>


同步練習(xí)冊答案