例1.已知f(x)=x2.求曲線(xiàn)在x=2處的切線(xiàn)的斜率 查看更多

 

題目列表(包括答案和解析)

已知f(x)=(x∈R)
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(2)若f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的取值范圍A;
(3)在(2)的條件下,設(shè)關(guān)于x的方程f(x)=的兩個(gè)根為x1、x2,若對(duì)任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范圍.

查看答案和解析>>

已知f(x)=(x∈R)
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(2)若f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的取值范圍A;
(3)在(2)的條件下,設(shè)關(guān)于x的方程f(x)=的兩個(gè)根為x1、x2,若對(duì)任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范圍.

查看答案和解析>>

已知f(x)=(x∈R)
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(2)若f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的取值范圍A;
(3)在(2)的條件下,設(shè)關(guān)于x的方程f(x)=的兩個(gè)根為x1、x2,若對(duì)任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)試用含a的代數(shù)式表示b;
(2)求f(x)的單調(diào)區(qū)間;
(3)令a=-1,設(shè)函數(shù)f(x)在x1、x2(x1<x2)處取得極值,記點(diǎn)M(x1,f(x1)),N(x2,f(x2)).證明:線(xiàn)段MN與曲線(xiàn)f(x)存在異于M,N的公共點(diǎn).

查看答案和解析>>

已知函數(shù)f(x)=
-x3+x2+bx+c,x<1
alnx,x≥1
的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線(xiàn)的斜率是-5.
(Ⅰ)求實(shí)數(shù)b,c的值;  
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線(xiàn)y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案