當0<2-k<k-1即<k<2時.方程表示焦點在y軸上的橢圓當2-k<0<k-1即k>2時.方程表示焦點在y軸上的雙曲線當k-1<0<2-k即k<1時.方程表示焦點在x軸上的雙曲線[教后感想與作業(yè)情況] 查看更多

 

題目列表(包括答案和解析)

設(shè)a>0,函數(shù)f(x)=
1
2
x2-4x+aln2x

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x=3時,函數(shù) f(x)取得極值,證明:當θ∈[0,
π
2
]時,|f(1+2cosθ)-f(1+2sinθ)|≤4-3ln3

查看答案和解析>>

設(shè)a>0,函數(shù)f(x)=
1
2
x2-4x+aln2x

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x=3時,函數(shù) f(x)取得極值,證明:當θ∈[0,
π
2
]時,|f(1+2cosθ)-f(1+2sinθ)|≤4-3ln3

查看答案和解析>>

當0<k<時,方程=kx的解的個數(shù)是(    )

A.3            B.2          C.1           D.0

查看答案和解析>>

已知函數(shù)fx)的定義域為{x| x ,k Z},且對于定義域內(nèi)的任何x、y,有f - y) = 成立,且fa) = 1(a為正常數(shù)),當0 < x < 2a時,fx) > 0.

(1)判斷fx)奇偶性;

(2)證明fx)為周期函數(shù);

(3)求fx)在[2a,3a] 上的最小值和最大值.

 

查看答案和解析>>

已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當且僅當0<x<1時f(x)<0,且對任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明:w.w.w.k.s.5.u.c.o.m       

(1)f(x)為奇函數(shù);(2)f(x)在(-1,1)上單調(diào)遞減.

查看答案和解析>>


同步練習(xí)冊答案