25x2+32cx+16c2-144=0,△=(32c)2-4×25×(16c2-144)=0.解得c=±5.它們與直線l的距離即為橢圓上點(diǎn)到直線距離的最值.dmax==6,此時代入可以求得點(diǎn)P2(,-),dmin==此時代入可以求得P1(-,)說明:這一方法的核心是數(shù)形結(jié)合.稱直線平移法 查看更多

 

題目列表(包括答案和解析)

橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為( 。

查看答案和解析>>

橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為( )
A.3x+2y-12=0
B.2x+3y-12=0
C.4x+9y-144=0
D.9x+4y-144=0

查看答案和解析>>

橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為( 。
A.3x+2y-12=0B.2x+3y-12=0
C.4x+9y-144=0D.9x+4y-144=0

查看答案和解析>>

橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為( )
A.3x+2y-12=0
B.2x+3y-12=0
C.4x+9y-144=0
D.9x+4y-144=0

查看答案和解析>>

若把滿足二元二次不等式(組)的平面區(qū)域叫做二次平面域.

    (1)畫出9x2-16y2+144≤0對應(yīng)的二次平面域;

    (2)求x2+y2的最小值;

    (3)求的取值范圍.

   

查看答案和解析>>


同步練習(xí)冊答案