(A) (B) (C) (D)1 查看更多

 

題目列表(包括答案和解析)

已知向量,那么=    

    (A)         (B)        (C)     (D)1

 

查看答案和解析>>

(1)如圖(a)(b)(c)(d)為四個(gè)平面圖,數(shù)一數(shù),每個(gè)平面圖各有多少個(gè)頂點(diǎn)?多少條邊?它們將平面圍成了多少個(gè)區(qū)域?

 

頂點(diǎn)數(shù)

邊數(shù)

區(qū)域數(shù)

(a)

 

 

 

(b)

 

 

 

(c)

 

 

 

(d)

 

 

 

 

(2)觀察上表,推斷一個(gè)平面圖形的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間有什么關(guān)系?

(3)現(xiàn)已知某個(gè)平面圖有999個(gè)頂點(diǎn),且圍成了999個(gè)區(qū)域,試根據(jù)以上關(guān)系確定這個(gè)平面圖有多少條邊?

查看答案和解析>>

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個(gè)三等分點(diǎn),直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長(zhǎng)為
2
3
3
2
3
3

(C)(坐標(biāo)系與參數(shù)方程選做題) 
在已知極坐標(biāo)系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實(shí)數(shù)a=
2或-8
2或-8

查看答案和解析>>

(A)(1)與(2)             (B)(2)與(3) 

(C)(3)與(4)             (D)(2)與(4)

 

查看答案和解析>>

(A)選修4-1:幾何證明選講
如圖,⊙O的割線PAB交⊙O于A,B兩點(diǎn),割線PCD經(jīng)過(guò)圓心交⊙O于C,D兩點(diǎn),若PA=2,AB=4,PO=5,則⊙O的半徑長(zhǎng)為
13
13


(B)選修4-4:坐標(biāo)系與參數(shù)方程
參數(shù)方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中當(dāng)t為參數(shù)時(shí),化為普通方程為
x2-y2=1
x2-y2=1

(C)選修4-5:不等式選講
不等式|x-2|-|x+1|≤a對(duì)于任意x∈R恒成立,則實(shí)數(shù)a的集合為
{a|a≥3}
{a|a≥3}

查看答案和解析>>

一、選擇題:本小題共8小題,每小題5分,共40分.

題號(hào)

1

2

3

4

5

6

7

8

答案

B

D

B

B

A

C

B

C

二、填空題:本小題9―12題必答,13、14、15小題中選答2題,若全答只計(jì)前兩題得分,共30分.

9.  35         10.            11.           12. 

13.           14.   10          15.

三、解答題:共80分.

16題(本題滿分13分)

解:(1)要使f(x)有意義,必須,即

得f(x)的定義域?yàn)?sub>………………………………4分

。ǎ玻┮上,

    當(dāng)時(shí)取得最大值………………………………………5分

    當(dāng)時(shí),,得f(x)的遞減區(qū)間為

,遞增區(qū)間為……9分

。ǎ常┮騠(x)的定義域?yàn)?sub>,關(guān)于原點(diǎn)不對(duì)稱,所以f(x)為非奇非偶函數(shù). ……………………………………………………………………13分

17題(本題滿分13分)

解:(1)當(dāng)且僅當(dāng)時(shí),方程組有唯一解.因的可能情況為三種情況………………………………3分

        而先后兩次投擲骰子的總事件數(shù)是36種,所以方程組有唯一解的概率

        ……………………………………………………………………6分

     

 

 

(2)因?yàn)榉匠探M只有正數(shù)解,所以兩直線的交點(diǎn)在第一象限,由它們的圖像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程組只有正數(shù)解的概率………………………………………………………………………13分

18題(本題滿分14分)

解:(1)因,所以AD⊥平面CDE,ED是AE在平面CDE上的射影,∠AED=450,所以直線AE與平面CDE所成的角為450………………………………4分(2)解法一:如圖,取AB、AD所在直線為x軸、y軸建立直角坐標(biāo)系A(chǔ)―xyz.

………5分

設(shè),  

…………9分

 

 

 

,得,而是平面CDE的一個(gè)法向量,且平面CDE,

所以MN//平面CDE…………………………………………………………………………14分

解法二:設(shè)在翻轉(zhuǎn)過(guò)程中,點(diǎn)M到平面CDE的距離為,點(diǎn)N到平面CDE的距離為,則,同理

所以,故MN//平面CDE……………………………………………………………14分

解法三:如圖,過(guò)M作MQ//AD交ED于點(diǎn)Q,

過(guò)N作NP//AD交CD于點(diǎn)P,

連接MN和PQ…………………………………5分

 

 

 

 

 

 

設(shè)ㄓADE向上翻折的時(shí)間為t,則,………………7分

,點(diǎn)D是CE的中點(diǎn),得,四邊形ABCD為正方形,ㄓADE為等腰三角形. ……………………10分

在RtㄓEMQ和RtㄓDNP中,ME=ND,∠MEQ=∠NDP=450,所以RtㄓEMQ≌RtㄓDNP,

所以MQ//NP且MQ=NP,的四邊形MNPQ為平行四邊形,所以MN//PQ,因平面CDE,

平面CDE,所以MN//平面CDE……………………………………………………14分

19題(本題滿分14分)

解:(1)由已知得,解得:……………………2分

所求橢圓方程為………………………………………………4分

(2)因,得……………………………………7分

(3)因點(diǎn)即A(3,0),設(shè)直線PQ方程為………………8分

則由方程組,消去y得:

設(shè)點(diǎn)……………………10分

,得

,代入上式得

,故

解得:,所求直線PQ方程為……………………14分

20題(本題滿分14分)

解:(1)函數(shù)f(x)的定義域?yàn)?sub>,…………2分

①當(dāng)時(shí),>0,f(x)在上遞增.………………………………4分

②當(dāng)時(shí),令解得:

,因(舍去),故在<0,f(x)遞減;在上,>0,f(x)遞增.…………8分

(2)由(1)知內(nèi)遞減,在內(nèi)遞增.

……………………………………11分

,又因

,得………………14分

21題(本題滿分12分)

解:(1)

解法一:由,可得

………………………………2分

所以是首項(xiàng)為0,公差為1的等差數(shù)列.

所以……………………4分

解法二:因

,

…………………………………………………………

由此可猜想數(shù)列的通項(xiàng)公式為:…………2分

以下用數(shù)學(xué)歸納法證明:

①當(dāng)n=1時(shí),,等式成立;

②假設(shè)當(dāng)n=k時(shí),有成立,那么當(dāng)n=k+1時(shí),

     成立

所以,對(duì)于任意,都有成立……………………4分

(2)解:設(shè)……①

……②

當(dāng)時(shí),①②得

…………6分

這時(shí)數(shù)列的前n項(xiàng)和

當(dāng)時(shí),,這時(shí)數(shù)列的前n項(xiàng)和

…………………………………………8分

(3)證明:因,顯然存在k=1,使得對(duì)任意

成立;…………………………………………9分

①當(dāng)n=1時(shí),等號(hào)成立;

②當(dāng)時(shí),因

               

               

所以,存在k=1,使得成立……………12分

 

 

 


同步練習(xí)冊(cè)答案