題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
1.C 2.C 3.D 4.A 5.D 6.D 7.B 8.D 9.B 10.C
l1.A 12.A
13.
14.15
15.
16.(1,2)
提示:
1.C
2.C .
3.D
4.A 直線與圓相切.
5.D 由得,極坐標為(,).
6.D 將的圖象向右平移個單位,再向下平移一個單位,?
7.B 該幾何體是上面是正四棱錐,下面為正方體,
體積為.
8.D .
9.B 畫出平面區(qū)域則到
直線的最大距離為
10.C
,,
,.
11.A ,設,
則d方程為.
過點,
12.A 的值域為
(或由)
(當且僅當)
13..
, .
14.15 ;
; .
15.
16.(1,2)
17.解:(1), (2分)
. (4分)
由余弦定理,得. (6分)
(2), (7分)
(9分) (10分)
(11分)
(11分)
(12分)
18.解:記基本事件為(,),
則有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),
(2,5),(2,6),(3,1),(3,2),(3,3).(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),
(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),
(6,3),(6,4),(6,5),(6,6).共36個基本事件. (2分)
其中滿是的基本事件有
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4), (2,5),(2,6),(3,4),
(3,5),(3,6),(4,5),(4,6),(5,6), 共15個. (5分)
滿足的基本事件有
(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,2),(4,3).
(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),共20個.(8分)
∴(1)的概率 (10分)
(2)的概率(考慮反面做也可) (12分)
l9.(1)證明:如圖,連結.
∵四邊形為矩形且F是的中點.
∴也是的中點. (1分)
又E是的中點, (2分)
∵EF由面面.(4分)
(2)證明:∵面面,面面,
.
又面 (6分)
又是相交直線,面 (7分)
又面面面. (8分)
(3)解:取中點為.連結
∵面面及為等腰直角三角形,面,即為四棱錐的高. (10分)
.
又.∴四棱錐的體積 (12分)
20.解:(1)由題意,得 (3分)
∴橢圓的方程為 (4分)
(2)若直線將圓分割成弧長的比值為的兩段圓弧,
則其中劣弧所對的圓心角為120°. (6分)
又圓的圓心在直線上,點是圓與直線的交點,
設Q是與圓的另一交點,則. (7分)
由①知 (8分)
設直線的傾斜角為,則或 (9分)
(10分)
或 (11分)
∴直線的方程為或 (12分)
21.(1)解:成等比數(shù)列,,即.
又 (3分)
(5分)
(2)證明: , (6分)
(7分)
(當且僅當時取“=”). ① (9分)
(當值僅當即時取“=”) ② (11分)
又①②中等號不可能同時取到,.(12分)
22.(1)解:∵函數(shù)在時取得一個極值,且,
,
(2分)
.
或時,或時,時,
, (4分)
在上都是增函數(shù),在上是減函數(shù). (5分)
∴使在區(qū)間上是單調函數(shù)的的取值范圍是 (6分)
(2)由(1)知.
設切點為,則切線的斜率,所以切線方程為:
. (7分)
將點代人上述方程,整理得:. (9分)
∵經(jīng)過點可作曲線的三條切線,
∴方程有三個不同的實根. (11分)
設,則
,
在上單調遞增,在上單調遞減,在上單調遞增,(12分)
故 (13分)
解得:. (14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com