題目列表(包括答案和解析)
C.選修4—4:坐標(biāo)系與參數(shù)方程
(本小題滿分10分)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),判斷直線和圓的位置關(guān)系.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系中,求過橢圓(為參數(shù))的右焦點(diǎn)且與直線(為參數(shù))平行的直線的普通方程。
C.(選修4—4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正
半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被截
得的弦的長度.
C.(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為(為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為 .
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程是(是參數(shù)),若以為極點(diǎn),軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.
1.D 2.B 3.C 4.B 5.A 6.B 7.B 8.D 9.C 10.C
l1.A 12.C
13.
14.15
15.
16.
提示:
1.D .
2.B 視力住0.9以上的頻率為,人數(shù)為.
3.C ,且
若,則且
反之,若,則
4.B ,由,得.
.
5.A .
6.B
當(dāng)時,,由得;
當(dāng)時,;
當(dāng)時,,由.
7.B 該幾何體是上面是正四棱錐,下面為正方體,體積為
.
8.D .
9.C ,
,
,
,
.
10.C
即,或.
則方程為.
過點(diǎn)
,
,
,
.
12.C 畫出平面區(qū)域,
圓的圓心,半徑為l,
的最大值為的最小值為
.的最大值為,最小值為
13..
, .
14.15 ;
;
.
15.
.
16..
又
17.解:(1), (2分)
. (4分)
由余弦定理,得. (6分)
(2), (7分)
(9分) (10分)
(11分)
(12分)
18.解:(1)的可能取值為l,2,3,4.
(4分)
∴甲取球次數(shù)的數(shù)學(xué)期望. (6分)
(2)由題意,兩人各自從自己的箱子里任取一球比顏色
共有(種)不同情形, (8分)
每種情形都是等可能,記甲獲勝為事件A,則
(11分)
所以甲獲勝的概率小于乙獲勝的概率,這個游戲規(guī)則不公平 (12分)
19.解:以為原點(diǎn),、、所在的直線為
,,軸,建立如圖所示的空間直角坐標(biāo)系,
則
(3分)
(1),
即直線與所成角的余角的余弦值為 (6分)
(2)設(shè)
由平面得
即 得
,即為的中點(diǎn). (9分)
(3)由(2)知為平面的法向量.
設(shè)為平面的法向量,
由即
令得,
,
即二面角的余弦值為 (12分)
(非向量解法參照給分)
20.(1)解:成等比數(shù)列,,即
又, (3分)
(5分)
(2)證明: . (6分)
是首項(xiàng)為2,公差為2的等差數(shù)列,
(7分)
(當(dāng)且僅當(dāng)時取“=”). ① (9分)
當(dāng)且僅當(dāng)即時取“=”. ② (11分)
又①②中等號不可能同時取到, (12分)
21.解:(1)設(shè).
對稱軸方程.由題意恒成立, (2分)
在區(qū)間上單凋遞增, (3分)
∴當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時取得最小值與最大值.(4分)
(安徽高中數(shù)學(xué)網(wǎng)站注:這里用橢圓第二定義根簡單直觀)
(2)由已知與(1)得:,
, (5分)
∴橢圓的標(biāo)準(zhǔn)方程為. (6分)
(3)設(shè),聯(lián)立
得. (7分)
則
又,(8分)
∵橢圓的右頂點(diǎn)為,
(9分)
解得:,且均滿足, (10分)
當(dāng)時,的方程為,直線過定點(diǎn)(2,0),與已知矛盾.
當(dāng)時,的方程為,直線過定點(diǎn)(,0), (11分)
∴直線過定點(diǎn),定點(diǎn)坐標(biāo)為(,0). (12分)
22,解:(1)由題意:的定義域?yàn)?sub>,且.
,故在上是單調(diào)遞增函數(shù). (2分)
(2)由(1)可知:
① 若,則,即在上恒成立,此時在上為增函數(shù),
(舍去). (4分)
② 若,則,即在上恒成立,此時在上為減函數(shù),
(舍去). (6分)
③ 若,令得,
當(dāng)時,在上為減函數(shù),
當(dāng)時,在上為增函數(shù),
(9分)
綜上可知:. (10分)(3).
又 (11分)
令,
在上是減函數(shù),,即,
在上也是減函數(shù),.
令得,∴當(dāng)在恒成立時,.(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com