11.(理)用4種不同的顏色為正方體的六個面著色.要求相鄰兩個面顏色不相同.則不同的著色方法有 種. A.24 B.48 C.72 D.96 查看更多

 

題目列表(包括答案和解析)

10、如圖所示,用4種不同的顏色涂入圖中的矩形A,B,C,D中,要求相鄰的矩形涂色不同,則不同的涂法( 。

查看答案和解析>>

用4種不同的顏色給三棱錐A-BCD各棱涂色,每條棱涂一種顏色,要求共頂點的棱不涂同種顏色,且四種顏色用完,則共有不同涂色方法(  )

查看答案和解析>>

10、用4種不同的顏色為一個固定位置的正方體的六個面著色,要求相鄰兩個面顏色不相同,則不同的著色方法數(shù)是( 。

查看答案和解析>>

(2013•遼寧一模)如圖,用4種不同的顏色對圖中5個區(qū)域涂色(4種顏色全部使用),要求每個區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有( 。

查看答案和解析>>

6、用4種不同的顏色對圓上依次排列的A,B,C,D四點染色,每個點染一種顏色,且相鄰兩點染不同的顏色,則染色方案的總數(shù)為(  )

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當且僅當時,△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且, 平面ABE.

(Ⅱ)連結BD交AC于C,連結FG,

∵正方形ABCD邊長為2,∴BG⊥AC,BG=,

平面ACE,

(Ⅲ)過點E作交AB于點O. OE=1.

∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

設D到平面ACE的距離為h,

平面BCE, 

  • <ul id="yyh5s"></ul>
      <big id="yyh5s"></big>
      <progress id="yyh5s"></progress>
        <table id="yyh5s"><ul id="yyh5s"></ul></table>

        解法二:(Ⅰ)同解法一.

        (Ⅱ)以線段AB的中點為原點O,OE所在直

        線為x軸,AB所在直線為y軸,過O點平行

        于AD的直線為z軸,建立空間直角坐標系

        O―xyz,如圖.

        面BCE,BE面BCE, ,

        的中點,

         設平面AEC的一個法向量為,

        解得

               令是平面AEC的一個法向量.

               又平面BAC的一個法向量為

               ∴二面角B―AC―E的大小為

        (III)∵AD//z軸,AD=2,∴,

        ∴點D到平面ACE的距離

        20.解:(1)

        ;

        (2)

        ,

        ,有最大值;即每年建造12艘船,年利潤最大(8分)

        (3),(11分)

        所以,當時,單調遞減,所以單調區(qū)間是,且

        21.解:(I)∵,且,

        ①④

        又由在處取得極小值-2可知②且

        將①②③式聯(lián)立得。   (4分)

        同理由

        的單調遞減區(qū)間是[-1,1], 單調遞增區(qū)間是(-∞,1   (6分)

        (II)由上問知:,∴。

        又∵!。∴!

        ,∴>0!。(8分)

        ∴當時,的解集是,

        顯然A不成立,不滿足題意。

        ,且的解集是。   (10分)

        又由A。解得。(12分)

        22.解:(1)設M(x,y)是所求曲線上的任意一點,Px1y1)是方程x2 +y2 =4的圓上的任意一點,則

            則有:得,

            軌跡C的方程為

           (1)當直線l的斜率不存在時,與橢圓無交點.

            所以設直線l的方程為y = k(x+2),與橢圓交于A(x1,y1)、B(x2,y2)兩點,N點所在直線方程為

            由

            由△=

            即 …   

            ,∴四邊形OANB為平行四邊形

            假設存在矩形OANB,則,即,

            即,

            于是有    得 … 設,

        即點N在直線上.

         ∴存在直線l使四邊形OANB為矩形,直線l的方程為

         

         

         

         


        同步練習冊答案