21.已知函數(shù)是定義在R上的函數(shù).且滿足,當(dāng)x>0時(shí).g 的表達(dá)式并畫出圖象. 查看更多

 

題目列表(包括答案和解析)

設(shè)g(x)是定義在R上的偶函數(shù),并且(-∞,0)為其遞增區(qū)間.已知x1<0,x2>0,且|x1|<|x2|,那么g(-x1)與g(-x2)的大小關(guān)系為


  1. A.
    g(-x1)<g(-x2)
  2. B.
    g(-x1)>g(-x2)
  3. C.
    g(-x1)≤g(-x2)
  4. D.
    以上都不對(duì)

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx,g(x)=
lnx
x
,它們的定義域都是(0,e],其中e≈2.718,a∈R
( I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
( II)當(dāng)a=1時(shí),對(duì)任意x1,x2∈(0,e],求證:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,問是否存在實(shí)數(shù)a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=xlnx,g(x)=-
2
3
x3+
1
2
ax2-3bx+c(a,b,c∈R)

(1)若函數(shù)h(x)=f′(x)-g′(x)是其定義域上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若g(x)是奇函數(shù),且g(x)的極大值是g(
3
3
)
,求函數(shù)g(x)在區(qū)間[-1,m]上的最大值;
(3)證明:當(dāng)x>0時(shí),f′(x)>
1
ex
-
2
ex
+1

查看答案和解析>>

已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時(shí),有f(x)=ax+lnx(其中e為自然對(duì)數(shù)的底,a∈R).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=
ln|x|
|x|
,x∈[-e,0)∪(0,e],求證:當(dāng)a=-1時(shí),|f(x)|>g(x)+
1
2

(3)試問:是否存在實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時(shí),f(x)的最小值是3?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x.
(1)當(dāng)x<0時(shí),求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=2x(x∈R),集合A={x|f(x)≥2},B={x|g(x)≥16},試判斷集合A和B的關(guān)系;
(3)已知對(duì)于任意的k∈N,不等式2k≥k+1恒成立,求證:函數(shù)f(x)的圖象與直線y=x沒有交點(diǎn).

查看答案和解析>>


同步練習(xí)冊(cè)答案