題目列表(包括答案和解析)
.(本小題滿分10分)選修4-1:幾何證明選講
已知ABC中,AB=AC, D是 ABC外接圓劣弧AC弧上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至E。
(1)求證:AD的延長(zhǎng)線平分CDE;
(2)若BAC=30°,ABC中BC邊上的高為2+,
求ABC外接圓的面積。
.(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,過(guò)點(diǎn)A(5,α)(α為銳角且)作平行于的直線,且與曲線L分別交于B,C兩點(diǎn)。(1)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長(zhǎng)度,建立平面直角坐標(biāo)系,寫出曲線L和直線的普通方程;(2)求|BC|的長(zhǎng)。
.(本小題滿分10分)選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求不等式的解集;
(Ⅱ)若,恒成立,求實(shí)數(shù)的取值范圍.
.(本小題滿分10分)
已知,求證:.
一、選擇題 CAAD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
由得,
又,,
∴ 或 或
∴ 或 或
.顯然事件即表示乙以獲勝,
∴
的所有取值為.
∴的分布列為:
3
4
5
數(shù)學(xué)期望.
.當(dāng)在中點(diǎn)時(shí),平面.
延長(zhǎng)、交于,則,
連結(jié)并延長(zhǎng)交延長(zhǎng)線于,
則,.
在中,為中位線,,
又,
∴.
∵中,
∴,即
又,,
∴平面 ∴.
∴為平面與平面所成二面
角的平面角。
又,
∴所求二面角的大小為.
.由題意知的方程為,設(shè),.
聯(lián)立 得.
∴.
由拋物線定義,
∴.拋物線方程,
由題意知的方程為.設(shè),
則,,
∴
.
由知,,,.
則
∴當(dāng)時(shí),的最小值為.
.∵ ,
∴.
∴
∴
即
∴s
時(shí),也成立
∴
,
∴
∴
∵ ,
又
∴
.,
∵在上單調(diào),
∴或在上恒成立.
即或恒成立.
或在上恒成立.
又,
∴或.
由得:
,
化簡(jiǎn)得
當(dāng)時(shí),,,
∴
又,
∴
當(dāng)時(shí),,
綜上,實(shí)數(shù)的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com