A. B. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

(    )

A.             B.1                C.             D.

 

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

    20090203

    17.(本小題滿分12分)

        解:(I)共線

       

         ………………3分

        故 …………6分

       (II)

       

          …………12分

    18.(本小題滿分12分)

    解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米

    ∠CAB=60˚.設∠ACD = α ,∠CDB = β .

    ,

    .……9分

    在△ACD中,由正弦定理得:

      19.(本小題滿分12分)

      解:(1)連結OP,∵Q為切點,PQOQ,

      由勾股定理有,

      又由已知

      即: 

      化簡得 …………3分

         (2)由,得

      …………6分

      故當時,線段PQ長取最小值 …………7分

         (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

      即R且R

      故當時,,此時b=―2a+3=

      得半徑最最小值時⊙P的方程為…………12分

      20.(本小題滿分12分)

      解:(I)過G作GM//CD交CC1于M,交D1C于O。

        ∵G為DD1的中點,∴O為D1C的中點

        從而GO

        故四邊形GFBO為平行四邊形…………3分

        ∴GF//BO

        又GF平面BCD1,BO平面BCD1

        ∴GF//平面BCD1。 …………5分

           (II)過A作AH⊥DE于H,

        過H作HN⊥EC于N,連結AN。

        ∵DC⊥平面ADD1A1,∴CD⊥AH。

        又∵AH⊥DE,∴AH⊥平面ECD。

        ∴AH⊥EC。 …………7分

        又HN⊥EC

        ∴EC⊥平面AHN。

        故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

        在Rt△EAD中,∵AD=AE=1,∴AH=

        在Rt△EAC中,∵EA=1,AC=

          …………12分

        21.(本小題滿分12分)

        解:(I)

         

           (II)

           (III)令上是增函數(shù)

        22.(本小題滿分12分)

        解:(I)

        單調遞增。 …………2分

        ,不等式無解;

        ;

        所以  …………5分

           (II), …………6分

                                 …………8分

        因為對一切……10分

           (III)問題等價于證明,

        由(1)可知

                                                           …………12分

        易得

        當且僅當成立。

                                                         …………14分

         

         

         


        同步練習冊答案