如圖.有一塊四邊形綠化區(qū)域.其中...現(xiàn)準備經(jīng)過上一點和上一點鋪設(shè)水管.且將四邊形分成面積相等的兩部分.設(shè).. 查看更多

 

題目列表(包括答案和解析)

 如圖,有一塊四邊形綠化區(qū)域,其中,,,現(xiàn)準備經(jīng)過上一點上一點鋪設(shè)水管,且將四邊形分成面積相等的兩部分,設(shè),

①求的關(guān)系式;②求水管的長的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

精英家教網(wǎng)如圖,有一塊四邊形BCED綠化區(qū)域,其中∠C=∠D=90°,BC=BD=
3
,CE=DE=1,現(xiàn)準備經(jīng)過DB上一點P和EC上一點Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分,設(shè)DP=x,EQ=y.
(1)求x,y的關(guān)系式;  (2)求水管PQ的長的最小值.

查看答案和解析>>

如圖,有一塊四邊形BCED綠化區(qū)域,其中∠C=∠D=90°,,CE=DE=1,現(xiàn)準備經(jīng)過DB上一點P和EC上一點Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分,設(shè)DP=x,EQ=y.
(1)求x,y的關(guān)系式;  (2)求水管PQ的長的最小值.

查看答案和解析>>

某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在△ABC內(nèi)的P點處有一服務(wù)站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在△ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運動場所.現(xiàn)已知點P處的服務(wù)站與AC距離為10米,與BC距離為100米.設(shè)DC=d米,試問d取何值時,運動場所面積最大?

查看答案和解析>>

如圖,有一塊四邊形BCED的綠化區(qū)域,其中∠C=∠D=90°,BC=BD=,CE=DE=1.現(xiàn)準備經(jīng)過DB上的一點P和EC上的一點Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分.設(shè)DP=x,EQ=y,
(1)求x,y的關(guān)系式;
(2)水管PQ至少輔設(shè)多長?

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.       2.1    3.-2     4.      5. (1)(2)

6. 4    7.甲       8.    9.9      10.

11.-2       12.       13.2       14. 2

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)∵

        …………………………………………5分

(2)∵

…………………………………………7分

         ……………………………………9分

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

 

17.(本小題滿分15分)

解:(1)取弦的中點為M,連結(jié)OM

由平面幾何知識,OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………6分

(2)設(shè)弦的中點為M,連結(jié)OM

              ……………………………………9分

解得                       …………………………………………11分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當,

,            

…………………………………………15分

19.(本小題滿分16分)

解(1)證:       由  得

上點處的切線為,即

又在上點處切線可計算得,即

∴直線、都相切,且切于同一點()      …………………5分

(2)

      …………………7分

   ∴上遞增

   ∴當……………10分

(3)

設(shè)上式為 ,假設(shè)取正實數(shù),則?

時,,遞減;

,遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

20.(本小題滿分16分)

解:(1),

對一切恒成立

的最小值,又 ,

                       …………………………………………4分

(2)這5個數(shù)中成等比且公比的三數(shù)只能為

只能是

      …………………………8分

顯然成立             ……………………………………12分

時,,

使不等式成立的自然數(shù)n恰有4個的正整數(shù)p值為3

                          ……………………………………………16分

 

 

泰州市2008~2009學年度第二學期期初聯(lián)考

高三數(shù)學試題參考答案

附加題部分

21.(選做題)(從A,B,C,D四個中選做2個,每題10分,共20分.)

A.解:(1)

∴AB=CD                            ……………………………………4分

(2)由相交弦定理得

2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),,由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

D.證明:(1)因為

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

(2)隨機變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機變量的分布列為

2

3

4

P

 

                    …………………………10分

23.(必做題)(本小題滿分10分)

(1),,,

,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

時,

時,∴   ……………………………………10分

 

 


同步練習冊答案