題目列表(包括答案和解析)
(本小題滿分14分)
已知函數。
(1)證明:
(2)若數列的通項公式為,求數列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數列滿足:,設,
若(2)中的滿足對任意不小于2的正整數,恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數
(1)求函數的單調區(qū)間;
(2)若當時,不等式恒成立,求實數的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數的取值范圍。(本小題滿分14分)
已知,其中是自然常數,
(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數,使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數列的前項和為,對任意的正整數,都有成立,記。
(I)求數列的通項公式;
(II)記,設數列的前項和為,求證:對任意正整數都有;
(III)設數列的前項和為。已知正實數滿足:對任意正整數恒成立,求的最小值。
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、 10、 = 11、 12. 42 ;
13. 2或 14. 15.
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當單調遞減,故所求區(qū)間為 ………………8分
(3)時
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數的圖象關于原點對稱,得,………1分
∴,∴. ………2分
∴,∴. ……………3分
∴,即. ………………5分
∴. ……………………………6分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………8分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. …………12分
18
證明:(I)在正中,是的中點,所以.
又,,,所以.
而,所以.所以由,有.
(II)取正的底邊的中點,連接,則.
又,所以.
如圖,以點為坐標原點,為軸,為軸,
建立空間直角坐標系.設,則有,
,,,,,.再設是面的法向量,則有
,即,可設.
又是面的法向量,因此
,
所以,即平面PAB與平面PDC所成二面角為.
(Ⅲ)由(II)知,設與面所成角為,則
所以與面所成角的正弦值為.
19(本題滿分14分)
20解:(I)建立圖示的坐標系,設橢圓方程為依題意,
橢圓方程為………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|