制定投資計劃時.不僅要考慮可能獲得的盈利.而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲.乙兩個項目. 根據(jù)預(yù)測.甲.乙項目可能的最大盈利率分別為100?和50?.可能的最大虧損分別為30?和10?. 投資人計劃投資金額不超過10萬元.要求確?赡艿馁Y金虧損不超過1.8萬元. 問投資人對甲.乙兩個項目各投資多少萬元.才能使可能的盈利最大? 查看更多

 

題目列表(包括答案和解析)

制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.則投資人對甲、乙兩個項目各投資分別為
 
 
萬元,才能使可能的盈利最大值為
 

查看答案和解析>>

(12分)制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目. 根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100﹪和50﹪,可能的最大虧損分別為30﹪和10﹪. 投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元. 問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

制定投資計劃時,不僅要考慮可能獲得的贏利,而且要考慮可能出現(xiàn)的虧損。某投資人打算投資甲、乙兩個項目,根據(jù)預(yù)測,甲、乙項目可能的最大贏利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元,問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的贏利最大?

 

查看答案和解析>>

(14分)制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙兩個項目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元,問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

 

 

 

查看答案和解析>>

一、選擇題

1~4   BBCA    5~8   ADCD

二、填空題

9、      10、    =      11、        12.   42  

13.  2或        14.        15.

三、解答題

16(本小題滿分12分)

1)

    ………………4分

  2)當(dāng)單調(diào)遞減,故所求區(qū)間為      ………………8分

   (3)

       ………………12分

17(本題滿分14分)

解:(Ⅰ)由函數(shù)的圖象關(guān)于原點對稱,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

極小

極大

.  …………12分

18

證明:(I)在正中,的中點,所以

,,,所以

,所以.所以由,有

 (II)取正的底邊的中點,連接,則

,所以

如圖,以點為坐標(biāo)原點,軸,軸,

建立空間直角坐標(biāo)系.設(shè),則有,

,,,,.再設(shè)是面的法向量,則有

,即,可設(shè)

是面的法向量,因此

,

所以,即平面PAB與平面PDC所成二面角為

(Ⅲ)由(II)知,設(shè)與面所成角為,則

所以與面所成角的正弦值為

 

19(本題滿分14分)

20解:(I)建立圖示的坐標(biāo)系,設(shè)橢圓方程為依題意,2a=4,

橢圓方程為………………………………2分

F(-1,0)將x=-1代入橢圓方程得

∴當(dāng)彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

    又點M異于頂點A1,A2,∴-2<x0<2,

    由P、M、A1三點共線可得P

    ………………………8分

    …………………12分

    ∴P、A2、N三點共線,∴直線A2M與NA2不垂直,

    ∴點A2不在以MN為直徑的圓上…………………………14分

     

     

    21.解:(I)  .注意到,即,

    .所以當(dāng)變化時,的變化情況如下表:

    +

    0

    遞增

    極大值

    遞減

    遞減

    極小值

    遞增

     

    所以的一個極大值,的一個極大值..

    (II) 點的中點是,所以的圖象的對稱中心只可能是.

    設(shè)的圖象上一點,關(guān)于的對稱點是..也在的圖象上, 因而的圖象是中心對稱圖形.

    (III) 假設(shè)存在實數(shù)、.,.

    , 當(dāng)時, ,而.故此時的取值范圍是不可能是.

    ,當(dāng)時, ,而.故此時的取值范圍是不可能是.

    ,由的單調(diào)遞增區(qū)間是,知的兩個解.而無解. 故此時的取值范圍是不可能是.

    綜上所述,假設(shè)錯誤,滿足條件的實數(shù)、不存在.

     

     

     

     


    同步練習(xí)冊答案