16. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an

(Ⅲ)  設bn=(32n-8),求數(shù)列{bn}的前項和Tn

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數(shù)列{an}滿足

   (Ⅰ)求數(shù)列的前三項:a1,a2,a3;

   (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當的 單調(diào)區(qū)間;

   (Ⅱ)當的取值范圍。

查看答案和解析>>

一、選擇題

1~4   BBCA    5~8   ADCD

二、填空題

9、      10、    =      11、        12.   42  ;

13.  2或        14.        15.

三、解答題

16(本小題滿分12分)

1)

    ………………4分

  2)當單調(diào)遞減,故所求區(qū)間為      ………………8分

   (3)

       ………………12分

17(本題滿分14分)

解:(Ⅰ)由函數(shù)的圖象關于原點對稱,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

極小

極大

.  …………12分

18

證明:(I)在正中,的中點,所以

,,,所以

,所以.所以由,有

 (II)取正的底邊的中點,連接,則

,所以

如圖,以點為坐標原點,軸,軸,

建立空間直角坐標系.設,則有

,,,,.再設是面的法向量,則有

,即,可設

是面的法向量,因此

所以,即平面PAB與平面PDC所成二面角為

(Ⅲ)由(II)知,設與面所成角為,則

所以與面所成角的正弦值為

 

19(本題滿分14分)

20解:(I)建立圖示的坐標系,設橢圓方程為依題意,2a=4,

橢圓方程為………………………………2分

F(-1,0)將x=-1代入橢圓方程得

∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

  • <dl id="sspak"></dl>

      又點M異于頂點A1,A2,∴-2<x0<2,

      由P、M、A1三點共線可得P

      ………………………8分

      …………………12分

      ∴P、A2、N三點共線,∴直線A2M與NA2不垂直,

      ∴點A2不在以MN為直徑的圓上…………………………14分

       

       

      21.解:(I)  .注意到,即,

      .所以當變化時,的變化情況如下表:

      +

      0

      遞增

      極大值

      遞減

      遞減

      極小值

      遞增

       

      所以的一個極大值,的一個極大值..

      (II) 點的中點是,所以的圖象的對稱中心只可能是.

      的圖象上一點,關于的對稱點是..也在的圖象上, 因而的圖象是中心對稱圖形.

      (III) 假設存在實數(shù)、.,.

      , 當時, ,而.故此時的取值范圍是不可能是.

      ,當時, ,而.故此時的取值范圍是不可能是.

      ,由的單調(diào)遞增區(qū)間是,知的兩個解.而無解. 故此時的取值范圍是不可能是.

      綜上所述,假設錯誤,滿足條件的實數(shù)、不存在.

       

       

       

       


      同步練習冊答案