16.若以原點為圓心的圓全部在區(qū)域內(nèi).則圓面積的最大值為 . 查看更多

 

題目列表(包括答案和解析)

已知橢圓E:
x2
a2
+
y2
b2
=1
(a,b>0)與雙曲線G:x2-y2=4,若橢圓E的頂點恰為雙曲線G的焦點,橢圓E的焦點恰為雙曲線G的頂點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在一個以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A、B,且
OA
OB
?若存在請求出該圓的方程,若不存在請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,直線L:y=mx+3-4m,m∈R恒過一定點,且與以原點為圓心的圓C恒有公共點.
(1)求出直線L恒過的定點坐標(biāo);
(2)當(dāng)圓C的面積最小時,求圓C的方程;
(3)已知定點Q(-4,3),直線L與(2)中的圓C交于M、N兩點,試問
QM
QN
•tan∠MQN
是否存在最大值,若存在則求出該最大值,并求出此時直線L的方程,若不存在請說明理由.

查看答案和解析>>

以原點為圓心的圓全部在區(qū)域
x-3y+6≥0
x-y+2≥0
內(nèi),則圓的面積的最大值為( 。

查看答案和解析>>

以原點為圓心的圓C全部在區(qū)域
x-2y+8≥0
x-y+4≥0
內(nèi),則圓C面積的最大值為

查看答案和解析>>

精英家教網(wǎng)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且過點P(2,
2
)
,設(shè)橢圓的右準(zhǔn)線l與x軸的交點為A,橢圓的上頂點為B,直線AB被以原點為圓心的圓O所截得的弦長為
4
5
5

(1)求橢圓E的方程及圓O的方程;
(2)若M是準(zhǔn)線l上縱坐標(biāo)為t的點,求證:存在一個異于M的點Q,對于圓O上任意一點N,有
MN
NQ
為定值;且當(dāng)M在直線l上運動時,點Q在一個定圓上.

查看答案和解析>>

1.D  2.D   3.D   4.D   5.B   6.C   7.C   8.C   9.B   1 0.C  11.A   12.B

13.  14.  15.    16.

提示:

1.D 由,得,所以焦點

2.D 解不等式,得,∴

,故

3.D (法一)當(dāng)時,推導(dǎo)不出,排除C;故選D。

(法二)∵為非零實數(shù)且滿足,∴,即,故選D。

4.D ,,∴,∴

5.B  兩式相減得,∴,∴

6.C  令,解得,∴

7.C  可知四面體的外接球以的中點為球心,故

8.C  由已知有解得

9.B   ,∴,又,

     ∴切線的方程為,即,∴點到直線的距離為期不遠

10.C  對于A、D,,不是對稱軸;對于B,電不是偶函數(shù);對于C,符合要求.

11.A   由題意知直線的方程為,當(dāng)時,,即點是漸近線上一點,∴,即離心率

12. B  應(yīng)先求出2人坐進20個座位的排法。排除2人相鄰的情況即可。

共有11+12=23個座位,去掉前排中間3個不能入坐的座位,還有20個座位,則2人坐入20個座位的排法有種,排除①兩人坐前排相鄰的12種情況;②兩人坐后排相鄰的22種情況,∴不同排法的種數(shù)有(種).

13.    展開式中的的系數(shù)是,

14.800    由圖知成績在中的頻率為,所以在10000人中成績在中的人有人。

15.   設(shè)棱長均為2,由圖知的距離相等,而到平面的距離為,故所成角的正弦值為

               

                                   

                            

                            

                                      

                             

                            

                            

16.    求圓面積的最大值,即求原點到三條直線距離的最小值,由于三個距離分別為,最小值為,所以圓面積的最大值為。

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴

……………8分

,∴,∴……………10分

18.解:(1)證明:延長相交于點,連結(jié)。

,且,∴的中點,的中點。

的中點,由三角形中位線定理,有

平面,平面,∴平面…………………6分

(2)(法一)由(1)知平面平面。

的中點,∴取的中點,則有。

,∴

平面,∴在平面上的射影,∴

為平面與平面所成二面角的平面角!10分

∵在中,,,

,即平面與平面所成二面角的大小為!12分

(法二)如圖,∵平面,

平面,

的中點為坐標(biāo)原點,以過且平行的直線為軸,所在的直線為 軸,所在的直線為軸,建立空間直角坐標(biāo)系。

設(shè),則,,,

,

設(shè)為平面的法向量,

   

,可得

又平面的法向量為,設(shè)所成的角為,………………… 8分

由圖可知平面與平面所成二面角為銳角。

∴平面與平面所成二面角的大小為………………………………12分

19.解:(1)由已知得,∵,∴

     ∵、是方程的兩個根,∴

,…………………………………………6分

(2)設(shè)兩臺電器無故障使用時間分別為,則銷售利潤總和為200元有三種情況:

,,;,

其概率分別為;

∴銷售兩臺這種家用電器的銷售利潤總和為200元的概率為

………………………12分

20.解:(1)∵,且的圖象經(jīng)過點,,

由圖象可知函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在 上單調(diào)遞減,

,解得,

………………………6分

(2)要使對都有恒成立,只需即可。

由(1)可知函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減,且,、

,

,

故所求的實數(shù)的取值范圍為………………………12分

21.解:(1)∵,∴,∴

又∵,∴數(shù)列是首項為1,公比為3的等比數(shù)列,。

當(dāng)時,),∴

(2),

當(dāng)時,;

當(dāng)時,,①

①-②得:


同步練習(xí)冊答案