如圖,已知定圓.定直線.過的一條動直線與直線相交于,與圓相交于兩點.是中點. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知橢圓:
x2
25
+
y2
9
=1
,過點F(4,0)作兩條互相垂直的弦AB,CD,設(shè)弦AB,CD的中點分別為M,N.
(1)線段MN是否恒過一個定點?如果經(jīng)過定點,試求出它的坐標(biāo),如果不經(jīng)過定點,試說明理由;
(2)求分別以AB,CD為直徑的兩圓公共弦中點的軌跡方程.

查看答案和解析>>

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點到長軸的兩個端點的距離分別為2+
3
和2-
3

(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

如圖6,已知動圓M過定點F(1,0)且與x軸相切,點F 關(guān)于圓心M 的對稱點為 F',動點F’的軌跡為C.

(1)求曲線C的方程;

(2)設(shè)是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P 、Q.

①證明:直線PQ的斜率為定值;

②記曲線C位于P 、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的

距離最大,求點B的坐標(biāo).

 

查看答案和解析>>

如圖6,已知動圓M過定點F(1,0)且與x軸相切,點F 關(guān)于圓心M 的對稱點為 F',動點F’的軌跡為C.
(1)求曲線C的方程;
(2)設(shè)是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P 、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P 、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的
距離最大,求點B的坐標(biāo).

查看答案和解析>>

如圖,已知定圓C:x2+(y-3)2=4,定直線m:x+3y+6=0,過A(-1,0)的一條動直線l與直線相交于N,與圓C相交于P,Q兩點,M是PQ中點.
(Ⅰ)當(dāng)l與m垂直時,求證:l過圓心C;
(Ⅱ)當(dāng)數(shù)學(xué)公式時,求直線l的方程;
(Ⅲ)設(shè)t=數(shù)學(xué)公式,試問t是否為定值,若為定值,請求出t的值;若不為定值,請說明理由.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

二、填空題(本大題共6小題,每小題5分,共30分)

9.                  10.60                   11.   

12.(1) (2)               13.1,                  14.,

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15.(本小題滿分13分)

解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

,將(1)代入得.所以.

于是有                             ………………3分

解得                             ………………6分

是遞增的,故.                   ………………7分

所以.                                         ………………8分

   (Ⅱ),.                     ………………10分

故由題意可得,解得.又, …………….12分

所以滿足條件的的最小值為13.                           ………………13分

16. (本小題滿分13分)

解:(Ⅰ)由,

   所以.                     …………………4分

   于是. …………7分

  

(Ⅱ)由正弦定理可得,

     所以.                                …………………….10分

.         ………………11分

,

解得.即=7 .                                           …………13分

17.(本小題滿分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面,

.

,,是矩形,的中點,

=,=

=,

⊥平面

平面,故平面⊥平面          ……………………5分

 (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

        ∴∠與平面所成的角.                ……………………7分

∴在Rt△中,=.  

 .  

與平面所成的角為 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

        ∴∠為二面角的平面角.             ……………………….11分

∵在Rt△中,=,在Rt△中, .

∴在Rt△中,     ………13分

即二面角的大小為arcsin.          ………………………………14分

 

解法二:

如圖,以為原點建立直角坐標(biāo)系

(0,0,0),(0,2,0),

(0,2,2),,,0),

,0,0).

   (Ⅰ) =(,0),=(,0),

         =(0,0,2),

?=(,,0)?(,,0)=0,

 ? =(,0)?(0,0,2)= 0.

,

⊥平面,又平面,故平面⊥平面. ……5分

   (Ⅱ)設(shè)與平面所成角為.

        由題意可得=(,,0),=(0,2,2 ),=(,,0).

        設(shè)平面的一個法向量為=(,,1),

        由.

          .

與平面所成角的大小為.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一個法向量,

        又⊥平面,平面的一個法向量=(,0,0),

        ∴設(shè)的夾角為,得,

        ∴二面角的大小為.      ………………………………14分

18. (本小題滿分13分)

解:(Ⅰ)設(shè)事件表示甲運動員射擊一次,恰好擊中9環(huán)以上(含9環(huán)),則

.                            ……………….3分

甲運動員射擊3次均未擊中9環(huán)以上的概率為

.                            …………………5分

所以甲運動員射擊3次,至少有1次擊中9環(huán)以上的概率為

.                               ………………6分

    (Ⅱ)記乙運動員射擊1次,擊中9環(huán)以上為事件,則

                        …………………8分

由已知的可能取值是0,1,2.                       …………………9分

;

;

.

的分布列為

0

1

2

0.05

0.35

0.6

                                               ………………………12分

所以

故所求數(shù)學(xué)期望為.                          ………………………13分

19. (本小題滿分14分)

解:(Ⅰ)由已知 ,故,所以直線的方程為.

      將圓心代入方程易知過圓心 .      …………………………3分

        (Ⅱ) 當(dāng)直線軸垂直時,易知符合題意;        ………………4分

當(dāng)直線與軸不垂直時,設(shè)直線的方程為,由于,

所以,解得.

故直線的方程為.        ………………8分

        (Ⅲ)當(dāng)軸垂直時,易得,,又

,故. 即.                   ………………10分

當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程得

.則

,即,

.又由,

.

.

綜上,的值為定值,且.                …………14分

另解一:連結(jié),延長交于點,由(Ⅰ)知.又,

故△∽△.于是有.


同步練習(xí)冊答案