如圖, 已知定圓.定直線.過的一條動(dòng)直線與直線相交于,與圓相交于兩點(diǎn).是中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知橢圓:
x2
25
+
y2
9
=1
,過點(diǎn)F(4,0)作兩條互相垂直的弦AB,CD,設(shè)弦AB,CD的中點(diǎn)分別為M,N.
(1)線段MN是否恒過一個(gè)定點(diǎn)?如果經(jīng)過定點(diǎn),試求出它的坐標(biāo),如果不經(jīng)過定點(diǎn),試說明理由;
(2)求分別以AB,CD為直徑的兩圓公共弦中點(diǎn)的軌跡方程.

查看答案和解析>>

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)到長軸的兩個(gè)端點(diǎn)的距離分別為2+
3
和2-
3

(1)求橢圓的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)如圖,過原點(diǎn)O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

如圖6,已知?jiǎng)訄AM過定點(diǎn)F(1,0)且與x軸相切,點(diǎn)F 關(guān)于圓心M 的對(duì)稱點(diǎn)為 F',動(dòng)點(diǎn)F’的軌跡為C.

(1)求曲線C的方程;

(2)設(shè)是曲線C上的一個(gè)定點(diǎn),過點(diǎn)A任意作兩條傾斜角互補(bǔ)的直線,分別與曲線C相交于另外兩點(diǎn)P 、Q.

①證明:直線PQ的斜率為定值;

②記曲線C位于P 、Q兩點(diǎn)之間的那一段為l.若點(diǎn)B在l上,且點(diǎn)B到直線PQ的

距離最大,求點(diǎn)B的坐標(biāo).

 

查看答案和解析>>

如圖6,已知?jiǎng)訄AM過定點(diǎn)F(1,0)且與x軸相切,點(diǎn)F 關(guān)于圓心M 的對(duì)稱點(diǎn)為 F',動(dòng)點(diǎn)F’的軌跡為C.
(1)求曲線C的方程;
(2)設(shè)是曲線C上的一個(gè)定點(diǎn),過點(diǎn)A任意作兩條傾斜角互補(bǔ)的直線,分別與曲線C相交于另外兩點(diǎn)P 、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P 、Q兩點(diǎn)之間的那一段為l.若點(diǎn)B在l上,且點(diǎn)B到直線PQ的
距離最大,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

如圖,已知定圓C:x2+(y-3)2=4,定直線m:x+3y+6=0,過A(-1,0)的一條動(dòng)直線l與直線相交于N,與圓C相交于P,Q兩點(diǎn),M是PQ中點(diǎn).
(Ⅰ)當(dāng)l與m垂直時(shí),求證:l過圓心C;
(Ⅱ)當(dāng)數(shù)學(xué)公式時(shí),求直線l的方程;
(Ⅲ)設(shè)t=數(shù)學(xué)公式,試問t是否為定值,若為定值,請(qǐng)求出t的值;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B      4.C       5.D      6.B     7.C      8. A

二、填空題(本大題共6小題,每小題5分,共30分)

9.點(diǎn)               10.               11. 6 , 60

12.                13.                   14. ,

注:兩個(gè)空的填空題第一個(gè)空填對(duì)得2分,第二個(gè)空填對(duì)得3分.

三、解答題(本大題共6小題,共80分)

15. (本小題滿分13分)

解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

,將(1)代入得.所以.  ……………3分

于是有                             ………………4分

解得                             ………………6分

是遞增的,故.                   ………………7分

所以.                                         ………………9分

   (Ⅱ).                                …………………11分

.                                       ………………13分

16.(本小題滿分13分)

解:(Ⅰ)在△中,由.

   所以.            …………………5分

(Ⅱ)由.  ………………………………….9分

,=;          ………………………11分

于是有,解得.           ……………………………13分

 

17.(本小題滿分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面

.

,,是矩形,的中點(diǎn),

=,,=,

=

⊥平面,

平面,故平面⊥平面.          ……………………5分

 (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

        ∴∠與平面所成的角.

∴在Rt△中,=.  

 .                            

與平面所成的角為 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則

        ∴∠為二面角的平面角.                 …………….11分

∵在Rt△中,=,在Rt△中,.

∴在Rt△中,

即二面角的大小為arcsin.    ………………………………14分

解法二:

如圖,以為原點(diǎn)建立直角坐標(biāo)系,

(0,0,0),(0,2,0),

(0,2,2),,,0),

,0,0).

   (Ⅰ) =(,,0),=(,0),

         =(0,0,2),

?=(,0)?(,0)=0,

 ? =(,,0)?(0,0,2)= 0.

,

⊥平面,又平面,故平面⊥平面.     ……5分

   (Ⅱ)設(shè)與平面所成角為.

        由題意可得=(,0),=(0,2,2 ),=(,,0).

        設(shè)平面的一個(gè)法向量為=(,,1),

        由.

          .

與平面所成角的大小為.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一個(gè)法向量,

        又⊥平面,平面的一個(gè)法向量=(,0,0),

        ∴設(shè)的夾角為,得

        ∴二面角的大小為.         ………………………………14分

18. (本小題滿分13分)

解: (Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率

       .                                     ………………4分

  (Ⅱ) 設(shè)事件表示“甲運(yùn)動(dòng)員射擊一次,擊中9環(huán)以上(含9環(huán))”, 記“乙運(yùn)動(dòng)員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件,則

.                           ………………………6分

.                          ………………………8分

“甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個(gè)事件,顯然,這兩個(gè)事件互斥.

甲擊中2次、乙擊中1次的概率為

;            ……………………..10分

甲擊中1次、乙擊中2次的概率為

.             …………………12分

所以所求概率為.                      

答: 甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為.  ……….13分

                                                      

19.(本小題滿分14分)

解: (Ⅰ) 由已知 , 又圓心,則 .故   .

  所以直線垂直.                        ………………………3分

        (Ⅱ) 當(dāng)直線軸垂直時(shí),易知符合題意;        ………………4分

當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為.   …………5分

由于,所以

,解得.         ………………7分

故直線的方程為.          ………………8分

         (Ⅲ)當(dāng)軸垂直時(shí),易得,,又

,故.                    ………………10分

當(dāng)的斜率存在時(shí),設(shè)直線的方程為,代入圓的方程得

.則

,即,

.又由,

.

.

綜上,的值與直線的斜率無關(guān),且.    …………14分

另解一:連結(jié),延長交于點(diǎn),由(Ⅰ)知.又,

故△∽△.于是有.

               ………………………14分

另解二:連結(jié)并延長交直線于點(diǎn),連結(jié)由(Ⅰ)知,

所以四點(diǎn)

同步練習(xí)冊(cè)答案