題目列表(包括答案和解析)
2 |
2 |
A、1 | ||
B、-1 | ||
C、±1 | ||
D、
|
∫ |
-
|
A、π | B、2 | C、π-2 | D、π+2 |
∫ |
-
|
A、0 | ||
B、
| ||
C、2 | ||
D、4 |
2+2cos8 |
1-sin8 |
A、4cos4-2sin4 |
B、2sin4 |
C、2sin4-4cos4 |
D、-2sin4 |
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.A 3.B 4.C 5.D 6.B 7.C 8. A
二、填空題(本大題共6小題,每小題5分,共30分)
9.點(diǎn) 10. 11. 6 , 60
12. 13. 14. ,
注:兩個(gè)空的填空題第一個(gè)空填對(duì)得2分,第二個(gè)空填對(duì)得3分.
三、解答題(本大題共6小題,共80分)
15. (本小題滿(mǎn)分13分)
解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有, (1)
又,將(1)代入得.所以. ……………3分
于是有 ………………4分
解得或 ………………6分
又是遞增的,故. ………………7分
所以. ………………9分
(Ⅱ). …………………11分
故. ………………13分
16.(本小題滿(mǎn)分13分)
解:(Ⅰ)在△中,由得.
所以. …………………5分
(Ⅱ)由得. ………………………………….9分
又,=; ………………………11分
于是有,解得. ……………………………13分
17.(本小題滿(mǎn)分14分)
解法一:(Ⅰ)∵正方形,∴
又二面角是直二面角,
∴⊥平面.
∵平面,
∴⊥.
又,,是矩形,是的中點(diǎn),
∴=,,=,
∴⊥又=,
∴⊥平面,
而平面,故平面⊥平面. ……………………5分
(Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作⊥,垂足為,則⊥平面.
∴∠是與平面所成的角.
∴在Rt△中,=.
.
即與平面所成的角為 . ………………………9分
(Ⅲ)由(Ⅱ),⊥平面.作⊥,垂足為,連結(jié),則⊥,
∴∠為二面角的平面角. …………….11分
∵在Rt△中,=,在Rt△中,.
∴在Rt△中,
即二面角的大小為arcsin. ………………………………14分
解法二:
如圖,以為原點(diǎn)建立直角坐標(biāo)系,
則(0,0,0),(0,2,0),
(0,2,2),(,,0),
(,0,0).
(Ⅰ) =(,,0),=(,,0),
=(0,0,2),
∴?=(,,0)?(,,0)=0,
? =(,,0)?(0,0,2)= 0.
∴⊥,⊥,
∴⊥平面,又平面,故平面⊥平面. ……5分
(Ⅱ)設(shè)與平面所成角為.
由題意可得=(,,0),=(0,2,2 ),=(,,0).
設(shè)平面的一個(gè)法向量為=(,,1),
由.
.
∴與平面所成角的大小為. ……………..9分
(Ⅲ)因=(1,-1,1)是平面的一個(gè)法向量,
又⊥平面,平面的一個(gè)法向量=(,0,0),
∴設(shè)與的夾角為,得,
∴二面角的大小為. ………………………………14分
18. (本小題滿(mǎn)分13分)
解: (Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率
. ………………4分
(Ⅱ) 設(shè)事件表示“甲運(yùn)動(dòng)員射擊一次,擊中9環(huán)以上(含9環(huán))”, 記“乙運(yùn)動(dòng)員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件,則
. ………………………6分
. ………………………8分
“甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個(gè)事件,顯然,這兩個(gè)事件互斥.
甲擊中2次、乙擊中1次的概率為
; ……………………..10分
甲擊中1次、乙擊中2次的概率為
. …………………12分
所以所求概率為.
答: 甲、乙兩運(yùn)動(dòng)員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為. ……….13分
19.(本小題滿(mǎn)分14分)
解: (Ⅰ) 由已知 , 又圓心,則 .故 .
所以直線(xiàn)與垂直. ………………………3分
(Ⅱ) 當(dāng)直線(xiàn)與軸垂直時(shí),易知符合題意; ………………4分
當(dāng)直線(xiàn)與軸不垂直時(shí),設(shè)直線(xiàn)的方程為. …………5分
由于,所以
由,解得. ………………7分
故直線(xiàn)的方程為或. ………………8分
(Ⅲ)當(dāng)與軸垂直時(shí),易得,,又則
,故. ………………10分
當(dāng)的斜率存在時(shí),設(shè)直線(xiàn)的方程為,代入圓的方程得
.則
,即,
.又由得,
則.
故.
綜上,的值與直線(xiàn)的斜率無(wú)關(guān),且. …………14分
另解一:連結(jié),延長(zhǎng)交于點(diǎn),由(Ⅰ)知.又于,
故△∽△.于是有.
由得
故 ………………………14分
另解二:連結(jié)并延長(zhǎng)交直線(xiàn)于點(diǎn),連結(jié)由(Ⅰ)知又,
所以四點(diǎn)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com