題目列表(包括答案和解析)
閱讀下面的文言文,完成下面5題。
李斯論 (清)姚鼐
蘇子瞻謂李斯以荀卿之學亂天下,是不然。秦之亂天下之法,無待于李斯,斯亦未嘗以其學事秦。
|
君子之仕也,進不隱賢;小人之仕也,無論所學識非也,即有學識甚當,見其君國行事,悖謬無義,疾首嚬蹙于私家之居,而矜夸導譽于朝庭之上,知其不義而勸為之者,謂天下將諒我之無可奈何于吾君,而不吾罪也;知其將喪國家而為之者,謂當吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂,禍遺后人,而彼宴然①無與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時而信也邪!
且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠乎?行其學而害秦者,商鞅也;舍其學而害秦者,李斯也。商君禁游宦,而李斯諫逐客②,其始之不同術也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學,建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學介甫之學耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術之學足亡人國,固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!
[注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅逐六國來到秦國做官的人,李斯寫了著名的《諫逐客書》,提出了反對意見。
對下列句子中加點的詞語的解釋,不正確的一項是( )
A.非是不足以中侈君張吾之寵 中:符合
B.滅三代法而尚督責 尚:崇尚
C.知其不義而勸為之者 勸:鼓勵
D.而終不以易目前之富貴 易:交換
下列各組句子中,加點的詞的意義和用法相同的一組是( )
A.因秦國地形便利 不如因普遇之
B.設所遭值非始皇、二世 非其身之所種則不食
C.且夫小人雖明知世之將亂 臣死且不避,卮酒安足辭
D.不亦遠乎 王之好樂甚,則齊國其庶幾乎
下列各項中,加點詞語與現代漢語意義不相同的一項是( )
A.小人之仕也,無論所學識非也
B.而大體得治世之要
C.而以富貴之謀,貽天下之亂
D.一以委曲變化從世好者
下列各句中對文章的闡述,不正確的一項是( )
A.蘇軾認為李斯以荀卿之學輔佐秦朝行暴政,致使天下大亂,作者則認為李斯是完全舍棄了荀子的說學,李斯的做法只不過是追隨時勢罷了。
B.作者由論李斯事秦進而泛論人臣事君的問題,強調為臣者對于國君的“悖謬無義”之政,不應為自身的富貴而阿附甚至助長之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。
D.文章開門見山,擺出蘇軾的觀點,然后通過對秦國發(fā)展歷史的分析,駁斥了蘇說的謬論,提出了自己的見解。論證嚴密,逐層深入,是一篇典范的史論。
把文言文閱讀材料中畫橫線的句子翻譯成現代漢語。
(1)秦之甘于刻薄而便于嚴法久矣
譯文:
(2)謂天下將諒我之無可奈何于吾君,而不吾罪也
譯文:
(3)其始之不同術也,而卒出于同者,豈其本志哉
譯文:
已知函數 R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調遞增,又
① 當,即時,在上恒成立,
所以在單調遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
已知遞增等差數列滿足:,且成等比數列.
(1)求數列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設數列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,;當時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數學歸納法.
當時,,成立.
假設當時,不等式成立,
當時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式, …………10分
, …………12分
所以對,都有,可知數列為單調遞減數列.
而,所以恒成立,
故的最小值為.
如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).
(1)寫出、和之間的等量關系,以及、和之間的等量關系;
(2)求證:();
(3)設,對所有,恒成立,求實數的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,
得
第三問
.………………………2分
因為函數在區(qū)間上單調遞增,所以當時,最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當時,可求得,命題成立; ……………2分
②假設當時,命題成立,即有,……………………1分
則當時,由歸納假設及,
得.
即
解得(不合題意,舍去)
即當時,命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因為函數在區(qū)間上單調遞增,所以當時,最大為,即
.……………2分
由題意,有. 所以,
已知,函數
(1)當時,求函數在點(1,)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當時, 又 所以函數在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時, 又
∴ 函數在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區(qū)間上為增函數,則
依題意,只需,即
解得 或(舍去)
則正實數的取值范圍是(,)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com