題目列表(包括答案和解析)
n |
![]() |
i=1 |
n |
![]() |
i=1 |
尺寸 | [2.7,2.8] | (2.8,2.9] | (2.9,3.0] | (3.0,3.1] | (3.1,3.2] | (3.2,3.3] |
甲機床零件頻數(shù) | 2 | 3 | 20 | 20 | 4 | 1 |
乙機床零件頻數(shù) | 3 | 5 | 17 | 13 | 8 | 4 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
7、9、10班同學做乙題,其他班同學任選一題,若兩題都做,則以較少得分計入總分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若a=-1,求f(x)的極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
(乙)定義在(0,+∞)上的函數(shù),其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若函數(shù)f(x)在點x=1處連續(xù),求a的值;
(2)若函數(shù)f(x)為(0,1)上的單調(diào)函數(shù),求實數(shù)a的取值范圍;并判斷此時函數(shù)f(x)在(0,+∞)上是否為單調(diào)函數(shù);
(3)當x∈(0,1)時,記g(x)=lnf(x)+x2-ax. 試證明:對,當n≥2時,有
已知
(1)求函數(shù)在
上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當
,即
時,
,
第二問中,,則
設
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)當
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當
,即
時,
,
…………4分
(2),則
設
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
6 |
5 |
C1E |
C1F |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com