(2)對(duì)一切.證明:成立, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}和{bn},對(duì)一切正整數(shù)n都有:a1bn+a2bn-1+a3bn-2+…+anb1=3n+1-2n-3成立.
(Ⅰ)如果數(shù)列{bn}為常數(shù)列,bn=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果數(shù)列{an}的通項(xiàng)公式為an=n,求證數(shù)列{bn}是等比數(shù)列.
(Ⅲ)如果數(shù)列{bn}是等比數(shù)列,數(shù)列{an}是否是等差數(shù)列?如果是,求出這個(gè)數(shù)列的通項(xiàng)公式;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知數(shù)列滿足
(1) 證明:;
(2) 比較an­的大小;
(3) 是否存在正實(shí)數(shù)c,使得,對(duì)一切恒成立?若存在,則求出c的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

已知數(shù)列滿足
(1) 證明:;
(2) 比較an­的大小;
(3) 是否存在正實(shí)數(shù)c,使得,對(duì)一切恒成立?若存在,則求出c的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

已知數(shù)列數(shù)學(xué)公式
(I)設(shè)數(shù)學(xué)公式,證明:數(shù)列{bn}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(II)求數(shù)列{an}的前n項(xiàng)和Sn
(III)設(shè)數(shù)學(xué)公式對(duì)一切正整數(shù)n均成立,并說(shuō)明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn},對(duì)一切正整數(shù)n都有:a1bn+a2bn-1+a3bn-2+…+anb1=3n+1-2n-3成立.
(Ⅰ)如果數(shù)列{bn}為常數(shù)列,bn=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果數(shù)列{an}的通項(xiàng)公式為an=n,求證數(shù)列{bn}是等比數(shù)列.
(Ⅲ)如果數(shù)列{bn}是等比數(shù)列,數(shù)列{an}是否是等差數(shù)列?如果是,求出這個(gè)數(shù)列的通項(xiàng)公式;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

一、選擇題

1―5  ACDAA    6―10  BACDB    11―12  AC

二、填空題

13.-    14.12       15.-4或-26     16.②④

三、解答題

17.(1)由題意:

又A+B

   (2)當(dāng)A+B=時(shí),2A+2B=

按向量平移后得到函數(shù)的圖象;故     10分

18.解:(1)ξ的可能取值為1,2,3,4

   (2)由題意,兩人各自從自己箱子里任取一球比顏色共有C(種)不同情形,每種情形都是等可能的,記甲獲勝為事件A,

則P(A)=

甲獲勝的概率小于乙獲勝的概率,不公平。                                                    12分

19.解法:(1)連結(jié)AC交BD于點(diǎn)O,則PO⊥面ABCD,又AC⊥BD

*  PA⊥BD,1D1PA⊥B1D1

    (2)AO⊥BD,AO⊥PO,AO⊥面PBD,過(guò)點(diǎn)O作OM⊥PD于M,連結(jié)AM,則AM⊥PD

         *∠AMO就是二面角A-PD-O的平面角θ,又AB=2,

PA=

     *                                   8分

   (3)分別取AD、BC中點(diǎn)E、F,作平面PEF,交底面于兩點(diǎn)S、S1交B1C1于點(diǎn)B2,過(guò)點(diǎn)B2作B2B3⊥PS于點(diǎn)B3,則B2B3⊥面PAD,又B1C1//AD,*B2B3的長(zhǎng)就是點(diǎn)B1到平面PAD的距離,PO=AA1=2

          *EF= 

                                  12分

    方法二,坐標(biāo)法略

20.解:(1)當(dāng)x=1時(shí),

   且x=1時(shí)也符合上式

                                                                                                              6

   (2)該商場(chǎng)預(yù)計(jì)第x月銷(xiāo)售該商品的月利潤(rùn)為

(舍)

當(dāng)1≤x<5時(shí),                                                                                                          10

*當(dāng)x=5時(shí),元                                                          10分

綜上,商場(chǎng)2009年第5月份的月利潤(rùn)最大為3125元。                                       12分

21.解:(1)以AB所在直線為x軸,線段AB的中垂線為y軸建立直角坐標(biāo)系,

設(shè)|CA|+|CB|=2a(a>3),點(diǎn)c的軌跡是以A、B為焦點(diǎn)的橢圓,且焦距2c=|AB|=6

此時(shí)|PA|=|PB|,P(0,±4)

                                                            5分

   (2)不妨設(shè)A點(diǎn)坐標(biāo)為A(-3,0),M(x1,y1),N(x2,y2)

    ①當(dāng)直線MN的傾斜角不為90°時(shí),設(shè)其方程為:

    代入橢圓方程化簡(jiǎn)得:

顯然

由橢圓第二定義得:

 

     =25+

只要考慮:的最小值,即1

顯然當(dāng)k=0時(shí),的最小值16。                                                         10分

   ②當(dāng)直線MN的傾角為90°時(shí),x1=x2=-3,得=

           這樣的M、N不存在

的最小值集合為空集。                                                         12分

22.解(1):由

   即數(shù)列為公正比的等比數(shù)列

                                                                                                         4分

   (2)

即要證明:成立

是減函數(shù),故

都成立

成立                                                                8分

   (3)

      

       利用錯(cuò)位相減法求得:

       故                                                                          12分

 


同步練習(xí)冊(cè)答案