查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數(shù)的零點(diǎn)為.         ……………………………………6分

(Ⅱ)由,

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(jí)(1)班應(yīng)抽取學(xué)生10名; ………………………2分

(Ⅱ)通過計(jì)算可得九(1)班抽取學(xué)生的平均成績(jī)?yōu)?6.5,九(2)班抽取學(xué)生的平均成績(jī)?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績(jī)?yōu)?6.5, 九(2)班學(xué)生的平均成績(jī)?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡(jiǎn)得  

當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

故所求的中點(diǎn)的軌跡的方程為;

    …………………………………………8分

②      假設(shè)過點(diǎn)P作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

         

由于 

直線,即,代入曲線的方程得

             

            

故這樣的直線不存在.                      ……………………………………12分

21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

由題意易知,   得    ;

                             當(dāng)時(shí),當(dāng)時(shí),

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當(dāng)時(shí),遞減,無極值.

②     當(dāng)時(shí),由

當(dāng)時(shí),當(dāng)時(shí),

時(shí),函數(shù)的極大值為

;

函數(shù)無極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設(shè)

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 


同步練習(xí)冊(cè)答案