某廠一月份.二月份.三月份.四月份的利潤分別為2.4.4.6.用線性回歸分析估計該廠五月份的利潤為 查看更多

 

題目列表(包括答案和解析)

某廠一月份、二月份、三月份、四月份的利潤分別為2、4、4、6(單位:萬元),用線性回歸分析估計該廠五月份的

利潤為                                      

    A.6.5萬元  B.7萬元    C.7.5萬元  D. 8萬元

查看答案和解析>>

某廠今年一月份、二月份、三月份的產(chǎn)量分別為1萬件、1.2萬件、1.3萬件,為了預測以后每一個月的產(chǎn)量,以這三個月的產(chǎn)量為預測依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份數(shù)x之間的關系,模擬函數(shù)可以選擇二次函數(shù)或函數(shù)g(x)=abx+c(其中a、b、c為常數(shù)).已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)比較合適,并請說明理由.

查看答案和解析>>

某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量,y與月份x的關系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=a•bx+c(a、b、c為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別為1萬件、1.2萬件、1.3萬件,為了估計以后每個月的產(chǎn)量,以這三個月的產(chǎn)品數(shù)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=a·bx+c(其中,a、b、c為常數(shù)).已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,并說明理由.

查看答案和解析>>

某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件,1.2萬件, 1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=a·bxc(a,b,c)為常數(shù)。已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數(shù)的零點為.         ……………………………………6分

(Ⅱ)由,

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點N,連結MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(1)班應抽取學生10名; ………………………2分

(Ⅱ)通過計算可得九(1)班抽取學生的平均成績?yōu)?6.5,九(2)班抽取學生的平均成績?yōu)?7.2.由此可以估計九(1)班學生的平均成績?yōu)?6.5, 九(2)班學生的平均成績?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設

由垂徑定理,

即       

化簡得  

軸平行時,的坐標也滿足方程.

故所求的中點的軌跡的方程為;

    …………………………………………8分

②      假設過點P作直線與有心圓錐曲線交于兩點,且P為的中點,則

         

由于 

直線,即,代入曲線的方程得

             

            

故這樣的直線不存在.                      ……………………………………12分

21.(Ⅰ)函數(shù)的定義域為

由題意易知,   得    ;

                             當時,時,

故函數(shù)的單調增區(qū)間為,單調減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當時,遞減,無極值.

②     當時,由

時,時,

時,函數(shù)的極大值為

;

函數(shù)無極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 


同步練習冊答案