已知向量.則的最小值為 查看更多

 

題目列表(包括答案和解析)

已知向量的最小值為

A. 1           B.             C.      D.

查看答案和解析>>

已知向量
α
,
β
,
γ
滿足|
α
|=1
,|
α
-
β
|=|
β
|
(
α
-
γ
)•(
β
-
γ
)=0
.若對每一確定的
β
,|
γ|
的最大值和最小值分別為m,n,則對任意
β
,m-n的最小值是( 。
A、
1
2
B、
1
4
C、
3
4
D、1

查看答案和解析>>

已知向量
α
,
β
,
γ
滿足|
α
|=1,|
α
-
β
|=|
β
|,(
α
-
γ
)•(
β
-
γ
)=0.若對每一確定的
β
,|
γ
|的最大值和最小值分別為m,n,則對任意
β
,m-n的最小值是
 

查看答案和解析>>

.已知向量,若,則16x+4y的最小值為____ ____。

 

查看答案和解析>>

已知向量,,且,則y取最小值時(shí),向量方向上的投影為(   )

A. B. C. D.

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數(shù)的零點(diǎn)為.         ……………………………………6分

(Ⅱ)由

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(jí)(1)班應(yīng)抽取學(xué)生10名; ………………………2分

(Ⅱ)通過計(jì)算可得九(1)班抽取學(xué)生的平均成績?yōu)?6.5,九(2)班抽取學(xué)生的平均成績?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績?yōu)?6.5, 九(2)班學(xué)生的平均成績?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡得  

當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

故所求的中點(diǎn)的軌跡的方程為

    …………………………………………8分

②      假設(shè)過點(diǎn)P作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

         

由于 

直線,即,代入曲線的方程得

             

            

故這樣的直線不存在.                      ……………………………………12分

21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

由題意易知,   得    ;

                             當(dāng)時(shí),當(dāng)時(shí),

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當(dāng)時(shí),遞減,無極值.

②     當(dāng)時(shí),由

當(dāng)時(shí),當(dāng)時(shí),

時(shí),函數(shù)的極大值為

;

函數(shù)無極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設(shè)

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 


同步練習(xí)冊答案