(2) 求面ABC與面EDC所成的二面角的大小,(3) 求BE與平面AFE所成角的大。 查看更多

 

題目列表(包括答案和解析)

如圖,已知多面體ABCDE中,AB⊥平面ACD,DEAB,△ACD是邊長為2的正三角形,且DE=2AB=2,FCD的中點.

(1)求證:AF∥平面BCE

(2)求面ABC與面EDC所成的二面角的大小(只求其中銳角);

(3)求BE與平面AFE所成角的大。

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟.

如圖,已知多面體ABCDE中,AB平面ACD,DE//AB,ACD是邊廠為2的正三角形,且DE=2AB=m,F(xiàn)是CD的中點.

(1)

求證:AF//平面BCE

(2)

求面ABC與面EDC所成的二面角的大小(只求其中銳角).

查看答案和解析>>

如圖,已知多面體ABCDE中,AB⊥平面ACD,DE∥AB,△ACD是邊長為2的正三角形,且DE=2AB=2,F(xiàn)是CD的中點.
(1)求證:AF∥平面BCE;
(2)求面ABC與面EDC所成的二面角的大。ㄖ磺笃渲袖J角);
(3)求BE與平面AFE所成角的大。

查看答案和解析>>

如圖,已知多面體ABCDE中,AB⊥平面ACD,DE∥AB,△ACD是邊長為2的正三角形,且DE=2AB=2,F(xiàn)是CD的中點.
(1)求證:AF∥平面BCE;
(2)求面ABC與面EDC所成的二面角的大小(只求其中銳角);
(3)求BE與平面AFE所成角的大小.

查看答案和解析>>

如圖,已知多面體ABCDE中,AB⊥平面ACD,DE∥AB,△ACD是邊長為2的正三角形,且DE=2AB=2,F(xiàn)是CD的中點.
(1)求證:AF∥平面BCE;
(2)求面ABC與面EDC所成的二面角的大小(只求其中銳角);
(3)求BE與平面AFE所成角的大。

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空題:本大題共5小題,每題5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答題:本題共6小題,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有兩道題答對的概率為,有一道題答對的概率為??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列為

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 證明:取CE中點M,則 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF為平行四邊形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:過C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

(3) 解:設B在平面AFE內(nèi)的射影為,作MN⊥FE于N,作CG⊥EF于G.

∴ BE與平面AFE所成角為

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上單調(diào)遞減,在上單調(diào)遞增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上遞減     ∴ ??????????????? 9分

    ∵    ∴上遞減

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

      ∴ D為線段FP的中點,

∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

設M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

整理得:

對滿足的k恒成立

故存在y軸上的點C(0,4),使為常數(shù)17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切線方程為與y = kx聯(lián)立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

兩邊取倒數(shù)得:      ∴

是以為首項,為公比的等比數(shù)列(時)

或是各項為0的常數(shù)列(k = 3時),此時an = 1

??????????????????????????????? 7分

當k = 3時也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

?????????????????????????????????????????????????? 12分

 

 


同步練習冊答案