A.存在一條直線l. B.存在一個平面 查看更多

 

題目列表(包括答案和解析)

直線l:x+y-4=0,圓x2+y2=4,A為直線上一點,若圓上存在兩點B,C,使得∠BAC=60°,則滿足條件的點A橫坐標最大值是
4
4

查看答案和解析>>

①直線l的傾斜角是α,則l的斜率為tanα;②直線l的斜率為-1,則其傾斜角為45°;③與坐標軸平行的直線沒有傾斜角;④任何一條直線都有傾斜角,但不是每一條直線都存在斜率.上述命題中,正確的個數(shù)為(  )

A.0個                                  B.1個

C.2個                                  D.3個

查看答案和解析>>

直線l平面α相交,若直線l不垂直于平面α,則( )
A.l與α內的任意一條直線不垂直
B.α內與l垂直的直線僅有1條
C.α內至少有一條直線與l平行
D.α內存在無數(shù)條直線與l異面

查看答案和解析>>

直線l:x+y-4=0,圓x2+y2=4,A為直線上一點,若圓上存在兩點B,C,使得∠BAC=60°,則滿足條件的點A橫坐標最大值是   

查看答案和解析>>

直線l平面α相交,若直線l不垂直于平面α,則( )
A.l與α內的任意一條直線不垂直
B.α內與l垂直的直線僅有1條
C.α內至少有一條直線與l平行
D.α內存在無數(shù)條直線與l異面

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空題:本大題共5小題,每題5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答題:本題共6小題,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有兩道題答對的概率為,有一道題答對的概率為??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列為

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 證明:取CE中點M,則 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF為平行四邊形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:過C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

(3) 解:設B在平面AFE內的射影為,作MN⊥FE于N,作CG⊥EF于G.

∴ BE與平面AFE所成角為

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上單調遞減,在上單調遞增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上遞減     ∴ ??????????????? 9分

    ∵    ∴上遞減

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

      ∴ D為線段FP的中點,

∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

設M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

整理得:

對滿足的k恒成立

故存在y軸上的點C(0,4),使為常數(shù)17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切線方程為與y = kx聯(lián)立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

兩邊取倒數(shù)得:      ∴

是以為首項,為公比的等比數(shù)列(時)

或是各項為0的常數(shù)列(k = 3時),此時an = 1

??????????????????????????????? 7分

當k = 3時也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

?????????????????????????????????????????????????? 12分

 

 


同步練習冊答案