5. 平面平面的一個(gè)充要條件是 查看更多

 

題目列表(包括答案和解析)

平面內(nèi)“一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)距離之和為定值”是“動(dòng)點(diǎn)軌跡為橢圓”的( )
A.充分非必要條件
B.充要條件
C.必要非充分條件
D.既非充分又非必要條件

查看答案和解析>>

平面向量
a
,
b
共線的充要條件是( 。
A、
a
,
b
方向相同
B、
a
,
b
兩向量中至少有一個(gè)為零向量
C、?λ∈R,
b
a
D、存在不全為零的實(shí)數(shù)λ1,λ2,λ1
a
+λ2
b
=
0

查看答案和解析>>

一個(gè)棱柱為正四棱柱的充要條件是( 。

查看答案和解析>>

平面向量
a
b
共線的充要條件是( 。
A、
a
,
b
方向相同
B、存在不全為零的實(shí)數(shù)λ1,λ2,λ1
a
2
b
=
0
C、?λ∈R,
b
a
D、
a
b
兩向量中至少有一個(gè)為零向量

查看答案和解析>>

平面向量a,b共線的充要條件是(    )

A. a,b方向相同                       B. a,b兩向量中至少有一個(gè)為零向量                   

C. ,       b= a                 D. 存在不全為零的實(shí)數(shù),, a + b =0

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空題:本大題共5小題,每題5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答題:本題共6小題,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有兩道題答對(duì)的概率為,有一道題答對(duì)的概率為??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列為

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 證明:取CE中點(diǎn)M,則 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF為平行四邊形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:過(guò)C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

(3) 解:設(shè)B在平面AFE內(nèi)的射影為,作MN⊥FE于N,作CG⊥EF于G.

∴ BE與平面AFE所成角為

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上單調(diào)遞減,在上單調(diào)遞增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上遞減     ∴ ??????????????? 9分

設(shè)    ∵    ∴上遞減

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

      ∴ D為線段FP的中點(diǎn),

∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

設(shè)M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

設(shè)

整理得:

對(duì)滿足的k恒成立

故存在y軸上的點(diǎn)C(0,4),使為常數(shù)17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切線方程為與y = kx聯(lián)立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

兩邊取倒數(shù)得:      ∴

是以為首項(xiàng),為公比的等比數(shù)列(時(shí))

或是各項(xiàng)為0的常數(shù)列(k = 3時(shí)),此時(shí)an = 1

時(shí)??????????????????????????????? 7分

當(dāng)k = 3時(shí)也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

當(dāng)?????????????????????????????????????????????????? 12分

 

 


同步練習(xí)冊(cè)答案