當即時.方程無解, 查看更多

 

題目列表(包括答案和解析)

某廠在一個空間容積為2000m3的密封車間內(nèi)生產(chǎn)某種化學藥品.開始生產(chǎn)后,每滿60分鐘會一次性釋放出有害氣體am3,并迅速擴散到空氣中.每次釋放有害氣體后,車間內(nèi)的凈化設(shè)備隨即自動工作20分鐘,將有害氣體的含量降至該車間內(nèi)原有有害氣體含量的r%,然后停止工作,待下一次有害氣體釋放后再繼續(xù)工作.安全生產(chǎn)條例規(guī)定:只有當車間內(nèi)的有害氣體總量不超過1.25am3時才能正常進行生產(chǎn).

(Ⅰ)當r=20時,該車間能否連續(xù)正常生產(chǎn)6.5小時?請說明理由;

(Ⅱ)能否找到一個大于20的數(shù)據(jù)r,使該車間能連續(xù)正常生產(chǎn)6.5小時?請說明理由;

(Ⅲ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)

已知該凈化設(shè)備的工作方式是:在向外釋放出室內(nèi)混合氣體(空氣和有害氣體)的同時向室內(nèi)放入等體積的新鮮空氣.已知該凈化設(shè)備的換氣量是200m3/分,試證明該設(shè)備連續(xù)工作20分鐘能夠?qū)⒂泻怏w含量降至原有有害氣體含量的20%以下.(提示:我們可以將凈化過程劃分成n次,且n趨向于無窮大.)

查看答案和解析>>

已知,函數(shù)

(1)當時,求函數(shù)在點(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數(shù)在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設(shè)

求導,得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實數(shù)的取值范圍是(

 

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案